2025年因果推断与机器学习:突破与应用

近年来,因果推断机器学习的结合取得了显著进展。从因果效应的识别与估计到异质性分析,再到中介效应和时空干扰的研究,这一领域不断拓展。这种结合不仅提升了因果推断的精度,还为社会科学研究提供了更强大的工具,有助于深入理解复杂社会现象背后的因果机制。

提出因果效应识别的最优实验设计算法,解决干预成本最小化问题,显著提升因果推断效率。

推动了社会科学的实证研究,为政策制定提供了更科学的依据,有助于优化资源分配并提升社会干预的效果。

我整理了10【机器学习+因果推断】的相关论文,全部论文PDF版可以关注工棕号{AI因斯坦}

回复  “因果ML”领取~

1.Locally Private Causal Inference for Randomized Experiments

文章聚焦随机实验中的局部隐私因果推断,提出不同隐私场景下的推断方法,包括频率主义估计贝叶斯方法,并通过模拟研究和真实数据分析验证其性能,为处理隐私数据的因果推断提供了有效方案。

  • 创新点

1.提出针对不同局部隐私场景的频率主义估计方法,定制隐私机制以达到极小极大最优推断,提升估计效果。

2.开发贝叶斯非参数方法及相应的抽样算法,能有效整合先验知识,在隐私预算紧张时表现出色。

3.在多种隐私场景下进行研究,涵盖联合私有化、定制私有化且已知或未知处理分配概率的情况,拓展了研究边界。

  • 研究结论

1.定制隐私机制的估计方法可达到极小极大最优,在不同隐私场景下表现良好,优于简单的联合私有化估计。

2.贝叶斯方法能有效利用先验信息,在隐私预算紧张时,相比频率主义方法具有更小的均方误差和更优的区间估计。

3.模拟研究和真实数据分析验证了所提方法的有效性,但在隐私保护和结果准确性之间存在权衡,未来可进一步优化。

全部论文PDF版可以关注工棕号{AI因斯坦}

回复  “因果ML”领取~

2.Optimal Experiment Design for Causal E ect Identification

文章围绕因果效应识别的最小成本干预设计问题展开,证明该问题 NP 完全,提出精确算法启发式算法,通过理论分析和实验评估,为解决此问题提供了有效途径。

  • 创新点

1.证明最小成本干预问题的 NP 完全性,并表明近似求解该问题的难度,为研究该问题的复杂性提供理论依据。

2.提出基于最小命中集问题的精确算法,能找到最优解或对数因子近似解,同时给出特殊情况下的多项式时间算法。

3.设计多种多项式时间启发式算法,通过实验验证其在随机图上能获得低遗憾解,并给出平均情况下的遗憾上界。

  • 研究结论

1.最小成本干预设计问题在一般情况下是 NP 完全的,难以找到多项式时间的精确算法。

2.提出的算法在解决单 c - 组件和一般子集的因果效应识别的最小成本干预问题上有效,精确算法可求解或近似求解,启发式算法在实际应用中有良好表现。

3.算法性能受图结构、边密度、干预成本等因素影响,在不同情况下应选择合适算法以平衡运行时间和结果的最优性。

全部论文PDF版可以关注工棕号{AI因斯坦}

回复  “因果ML”领取~

3.Riemannian Bilevel Optimization

文章针对黎曼双级优化问题,提出并分析了 RF²SA 算法,通过将问题转化为单级约束问题,避免使用二阶信息,给出了算法在不同情况下的收敛速率,为相关领域优化提供新方法。

  • 创新点

1.提出 RF²SA 算法,利用一阶梯度信息解决黎曼双级优化问题,避免复杂的二阶信息计算,简化了算法实现过程。

2.推导了拉格朗日乘子 λ 的最优增长速率,确保算法在不依赖二阶导数的情况下非渐近收敛到 ε- 平稳点。

3.给出了算法在随机场景下的收敛速率保证,且该速率与欧几里得优化中的预期速率一致,适应了黎曼流形的复杂性 。

  • 研究结论

1.RF²SA 算法是一种有效的黎曼双级优化算法,能在避免二阶信息的情况下,收敛到 ε- 平稳点,且在不同噪声条件下均有收敛速率保证。

2.算法的收敛速率在不同噪声场景下有所不同,噪声影响越少收敛越快,在完全确定性场景下收敛速率可达O(k−2/3) 。

3.该算法为解决涉及流形约束的复杂优化挑战提供了几何感知框架,但仍存在迭代复杂度较高等局限性,未来可拓展其应用范围 。

全部论文PDF版可以关注工棕号{AI因斯坦}

回复  “因果ML”领取~

顶会投稿交流群来啦!

欢迎大家加入顶会投稿交流群一起交流~这里会实时更新AI领域最新资讯、顶会最新动态等信息~

【干货书】《因果推理导论-机器学习角度》,132页pdf 有几个主要的主题贯穿全书。这些主题主要是对两个不同类别的比较。当你阅读的时候,很重要的一点是你要明白书的不同部分适合什么类别,不适合什么类别。 统计因果。即使有无限多的数据,我们有时也无法计算一些因果量。相比之下,很多统计是关于在有限样本中解决不确定性的。当给定无限数据时,没有不确定性。然而,关联,一个统计概念,不是因果关系。在因果推理方面还有更多的工作要做,即使在开始使用无限数据之后也是如此。这是激发因果推理的主要区别。我们在这一章已经做了这样的区分,并将在整本书中继续做这样的区分。 识别评估。因果效应的识别是因果推论所独有的。这是一个有待解决的问题,即使我们有无限的数据。然而,因果推理也传统统计和机器学习共享估计。我们将主要从识别因果效应(在第2章中,4和6)之前估计因果效应(第7章)。例外是2.5节和节4.6.2,我们进行完整的例子估计给你的整个过程是什么样子。 介入观察。如果我们能进行干预/实验,因果效应的识别就相对容易了。这很简单,因为我们可以采取我们想要衡量因果效应的行动,并简单地衡量我们采取行动后的效果。观测数据变得更加复杂,因为数据中几乎总是引入混杂。 假设。将会有一个很大的焦点是我们用什么假设来得到我们得到的结果。每个假设都有自己的框来帮助人们注意到它。清晰的假设应该使我们很容易看到对给定的因果分析或因果模型的批评。他们希望,清晰地提出假设将导致对因果关系的更清晰的讨论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值