spark连接kafka

1.Kafka命令行的使用

2.1创建topic

kafka-topics.sh --create --zookeeper node01:2181,node02:2181,node03:2181 --topic test1 --partitions 3 --replication-factor 3

主题名称-分区编号。

2.2查看所有的topic

kafka-topics.sh --list --zookeeper node01:2181,node02:2181,node03:2181

2.3查看某个topic的详细信息

kafka-topics.sh --describe --zookeeper node01:2181,node02:2181,node03:2181 --topic test1

ISR: In-Sync Replicas   可以提供服务的副本。

AR = ISR + OSR

2.4删除topic

kafka-topics.sh --delete --zookeeper node01:2181,node02:2181,node03:2181 --topic test1

2.5生产数据

kafka-console-producer.sh:

指定broker

指定topic

写数据的命令:

kafka-console-producer.sh --broker-list node01:9092,node02:9092,node03:9092 --topic test1

2.6消费数据

kafka-console-consumer.sh --topic test1 --bootstrap-server node01:9092,node02:9092,node03:9092

注意: 此命令会从日志文件中的最后的位置开始消费。

如果想从头开始消费:

kafka-console-consumer.sh --topic test1 --bootstrap-server node01:9092,node02:9092,node03:9092 --from-beginning

第三节 Spark-Streaming核心编程

DStream创建

Kafka数据源:

ReceiverAPI:需要一个专门的 Executor 去接收数据,然后发送给其他的 Executor 做计算。存在的问题,接收数据的 Executor 和计算的 Executor 速度会有所不同,特别在接收数据的 Executor速度大于计算的 Executor 速度,会导致计算数据的节点内存溢出。

早期版本中提供此方式,当前版本不适用。

DirectAPI:是由计算的 Executor 来主动消费 Kafka 的数据,速度由自身控制。

Kafka 0-10 Direct 模式

  1. 需求:通过 SparkStreaming 从 Kafka 读取数据,并将读取过来的数据做简单计算,最终打印到控制台。
  2. 导入依赖

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
    <version>3.0.0</version>
</dependency>

  1. 编写代码
  2. /**
     * 通过DirectAPI 0-10 消费kafka数据
     * 消费的offset保存在_consumer_offsets主题中
     */
    object DirectAPI {
      def main(args: Array[String]): Unit = {
        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("direct")


    val ssc = new StreamingContext(sparkConf,Seconds(3))

    //定义kafka相关参数
    val kafkaPara :Map[String,Object] = Map[String,Object](ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG ->"node01:9092,node02:9092,node03:9092",
      ConsumerConfig.GROUP_ID_CONFIG->"kafka",
      "key.deserializer"->"org.apache.kafka.common.serialization.StringDeserializer",
      "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
    )

    //通过读取kafka数据,创建DStream
    val kafkaDStream:InputDStream[ConsumerRecord[String,String]] = KafkaUtils.createDirectStream[String,String](
      ssc,LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String,String](Set("kafka"),kafkaPara)
    )

    //提取出数据中的value部分
    val valueDStream :DStream[String] = kafkaDStream.map(record=>record.value())

    //wordCount计算逻辑
    valueDStream.flatMap(_.split(" "))
      .map((_,1))
      .reduceByKey(_+_)
      .print()

    ssc.start()
    ssc.awaitTermination()

  1. 开启Kafka集群

  1. 开启Kafka生产者,产生数据

kafka-console-producer.sh --broker-list node01:9092,node02:9092,node03:9092 --topic kafka

  1. 运行程序,接收Kafka生产的数据并进行相应处理

8)查看消费进度

kafka-consumer-groups.sh --describe --bootstrap-server node01:9092,node02:9092,node03:9092 --group kafka

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值