【算法日记】栈与队列经典算法:括号匹配,逆波兰表达式,出入栈次序,循环队列

括号匹配(LC20)

题目描述

给定一个只包括 (){}[] 的字符串 s ,判断字符串是否有效。

有效字符串需满足:

  1. 左括号必须用相同类型的右括号闭合。
  2. 左括号必须以正确的顺序闭合。
  3. 每个右括号都有一个对应的相同类型的左括号。

示例 1:
输入:s = ()
输出:true

示例 2:
输入:s = ()[]{}
输出:true

示例 3:
输入:s = (]
输出:false

示例 4:
输入:s = ([])
输出:true

示例 5:
输入:s = ([)]
输出:false

解题思路

在这里插入图片描述
字符串大致可以分为四种情况:

  1. 括号匹配,正确
  2. 左右括号不匹配
  3. 匹配但左括号多
  4. 匹配但右括号多
  • 这种结构使用栈(先进后出)更合适,先定义一个栈,遍历字符串,只要字符是[ { (其中一个,则入栈。
  • 不是这种情况则先检查栈是否为空,如果为空则符合情况4,返回false
  • 如果栈不为空则获取栈顶元素,判断与当前字符是否匹配,匹配则删除,不匹配则返回false
  • 遍历结束后再检查栈是否为空,如果不为空,则复合第3种情况,返回false
  • 以上情况全部排除,即在括号匹配,字符串遍历完成且栈为空,则返回true

代码示例

    public boolean isValid(String s) {
        Stack<Character> stack = new Stack<>();
        for(int i = 0;i<s.length();i++){
            char ch = s.charAt(i);
            if(ch=='{'||ch=='['||ch=='('){
                stack.push(ch);
            }else{
                if(stack.isEmpty())
                    return false;
                char ch1 = stack.peek();
                if(ch1=='('&&ch==')'||ch1=='['&&ch==']'||ch1=='{'&&ch=='}')
                    stack.pop();
                else
                    return false;
            }
        }
        if(!stack.isEmpty())
            return false;
        return true;
    }

逆波兰表达式(LC150)

题目描述

给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。

请你计算该表达式。返回一个表示表达式值的整数。

注意:

  • 有效的算符为 +-*/
  • 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
  • 两个整数之间的除法总是 向零截断 。
  • 表达式中不含除零运算。
  • 输入是一个根据逆波兰表示法表示的算术表达式。
  • 答案及所有中间计算结果可以用 32 位 整数表示。

示例 1:
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

示例 2:
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

解题思路

  • 先判断当前字符是数字还是操作符,如果是数字则用Integer.parseInt转化为整型,压栈。
  • 如果是操作符则拿出栈后两个元素,需要注意两个操作数的顺序。计算后再压栈
  • 返回栈中最后的元素

代码示例

boolean isOperator(String s){
        return (s.equals("+")||s.equals("-")||s.equals("*")||s.equals("/"));
    }
    public int evalRPN(String[] tokens) {
        Stack<Integer> stack = new Stack<>();
        for(String str:tokens){
            if(!isOperator(str)){
                int x = Integer.parseInt(str);
                stack.push(x);
            }else{
                int val1 = stack.pop();
                int val2 = stack.pop();
                switch(str){
                    case "+":
                    stack.push(val2+val1);
                    break;
                    case "-":
                    stack.push(val2-val1);
                    break;
                     case "*":
                    stack.push(val2*val1);
                    break;
                    case "/":
                    stack.push(val2/val1);
                    break;
                }
            }
        }
                return stack.pop();
    }

出栈入栈次序匹配(JZ31)

题目描述

输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序。假设压入栈的所有数字均不相等。例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压栈序列对应的一个弹出序列,但4,3,5,1,2就不可能是该压栈序列的弹出序列。

  1. 0 <= pushV.length == popV.length <=1000
  2. -1000<=pushV[i]<=1000
  3. pushV 的所有数字均不相同

示例1
输入:[1,2,3,4,5],[4,5,3,2,1]
返回值:true
说明:可以通过push(1)=>push(2)=>push(3)=>push(4)=>pop()=>push(5)=>pop()=>pop()=>pop()=>pop()这样的顺序得到[4,5,3,2,1]这个序列,返回true

示例2
输入:[1,2,3,4,5],[4,3,5,1,2]
返回值:false
说明:由于是[1,2,3,4,5]的压入顺序,[4,3,5,1,2]的弹出顺序,要求4,3,5必须在1,2前压入,且1,2不能弹出,但是这样压入的顺序,1又不能在2之前弹出,所以无法形成的,返回false

解题思路

  • 创建栈来存放pushA中的元素,i指针遍历pushV中的元素,j指针遍历popV中元素
  • 每存放一个元素,将栈顶元素与popV[j]对比,相等则出栈,直到栈空或不相等
  • 最后如果栈空则返回true,不空返回false

代码示例

 public boolean IsPopOrder (int[] pushV, int[] popV) {
        if(pushV.length==0)
            return false;

        int j = 0;
        Stack<Integer> stack = new Stack<>();
        for(int i = 0;i<pushV.length;i++){
            stack.push(pushV[i]);
            while(!stack.isEmpty()&&stack.peek()==popV[j]){
                stack.pop();
                j++;
            }
        }
        return stack.isEmpty();
    }

最小栈问题(LC155)

题目描述

设计一个支持 pushpoptop 操作,并能在常数时间内检索到最小元素的栈。

实现 MinStack 类:

  • MinStack() 初始化堆栈对象。
  • void push(int val) 将元素val推入堆栈。
  • void pop() 删除堆栈顶部的元素。
  • int top() 获取堆栈顶部的元素。
  • int getMin() 获取堆栈中的最小元素。

示例 :
输入:
["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]
输出:[null,null,null,null,-3,null,0,-2]
解释:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.getMin(); --> 返回 -2.

解题思路

创建一个栈stack用于存放所有元素,一个栈minStack存放最小元素

  • void push(int val) 将元素val推入stack。如果minStack为空或者val<=栈顶元素,则压栈。需要注意的是:相等也需要压入栈,因为后续有弹出的操作,所以stackminStack中最小元素必须相等

  • void pop() 删除堆栈顶部的元素。如果stackminStack栈顶元素相等,则minStack也删除

  • int getMin() 获取minStack栈顶元素

代码示例

class MinStack {
    Stack<Integer> stack = new Stack<>();
    Stack<Integer> minStack = new Stack<>();

    public MinStack() {
        
    }
    
    public void push(int val) {
        stack.push(val);
        if(minStack.isEmpty()||minStack.peek()>=val){
            minStack.push(val);
        }
    }
    
    public void pop() {
        int val = stack.pop();
        if(minStack.peek()==val)
        minStack.pop();
    }
    
    public int top() {
        return stack.peek();
    }
    
    public int getMin() {
        return minStack.peek();
    }
}

设计循环队列(LC622)

题目描述

设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。

循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。

你的实现应该支持如下操作:

  • MyCircularQueue(k): 构造器,设置队列长度为 k 。
  • Front: 从队首获取元素。如果队列为空,返回 -1 。
  • Rear: 获取队尾元素。如果队列为空,返回 -1 。
  • enQueue(value): 向循环队列插入一个元素。如果成功插入则返回真。
  • deQueue(): 从循环队列中删除一个元素。如果成功删除则返回真。
  • isEmpty(): 检查循环队列是否为空。
  • isFull(): 检查循环队列是否已满。

示例:
MyCircularQueue circularQueue = new MyCircularQueue(3); // 设置长度为 3
circularQueue.enQueue(1); // 返回 true
circularQueue.enQueue(2); // 返回 true
circularQueue.enQueue(3); // 返回 true
circularQueue.enQueue(4); // 返回 false,队列已满
circularQueue.Rear(); // 返回 3
circularQueue.isFull(); // 返回 true
circularQueue.deQueue(); // 返回 true
circularQueue.enQueue(4); // 返回 true
circularQueue.Rear(); // 返回 4

解题思路

  • 底层是数组elemrear用于维护队尾,front用于维护队首,size记录已存放元素的个数,capacity记录数组容量。
  • 数组的头和尾要特殊处理:
    • enQueue() 入队:考虑rear是否在数组最后,如果是,则置为0;不是则rear+1
    • deQueue() 出队:与入队相同,考虑front是否在数组最后,如果是,则置为0;不是则rear+1
    • Rear() 返回队尾元素:考虑rear是否为0,是则访问最后一个下标,也就是capacity-1;不是则访问rear-1
      在这里插入图片描述

代码示例

class MyCircularQueue {
    int[] elem;
    int rear;
    int front;
    int size;
    int capacity;

    public MyCircularQueue(int k) {
        this.elem = new int[k];
        this.capacity = k;
    }
    
    public boolean enQueue(int value) {
        if(isFull())
        return false;
        elem[rear] = value;
        rear = (rear==capacity-1) ? 0 : rear+1;
        size++;
        return true;
    }
    
    public boolean deQueue() {
        if(isEmpty())
        return false;
        front = (front==capacity-1) ? 0 : front+1;
        size--;
        return true;
    }
    
    public int Front() {
        if(isEmpty())
        return -1;
        return elem[front];
    }
    
    public int Rear() {
        if(isEmpty())
        return -1;
        int ret = rear==0 ? capacity-1 : rear-1;
        return elem[ret];
    }
    
    public boolean isEmpty() {
        return size==0;
    }
    
    public boolean isFull() {
        return size==capacity;
    }
}

用队列实现栈(LC225)

题目描述

请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。

实现 MyStack 类:

  • void push(int x) 将元素 x 压入栈顶。
  • int pop() 移除并返回栈顶元素。
  • int top() 返回栈顶元素。
  • boolean empty() 如果栈是空的,返回 true ;否则,返回 false 。

注意:
你只能使用队列的标准操作 —— 也就是 push to backpeek/pop from frontsizeis empty 这些操作。
你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。

示例:
输入:
[“MyStack”, “push”, “push”, “top”, “pop”, “empty”]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 2, 2, false]
解释:
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // 返回 2
myStack.pop(); // 返回 2
myStack.empty(); // 返回 False

解题思路

在这里插入图片描述

队列只能遵循先进先出,要实现栈就要用两个队列(q1,q2)搭配。

  • void push() 找到空的队列,依次入队。
  • int pop() 先把队尾之前的元素依次入队到另一个空队列,最后把队尾元素弹出并返回
  • int top()pop()方法类似,所有元素依次入队到另一个空队列,但是需要一个变量(val)记录出队的元素,最后返回val
  • boolean empty() 如果q1,q1都为空,则栈为空

代码示例

import java.util.LinkedList;
import java.util.Queue;

public class MyStackUseQueue {
    Queue<Integer> q1 ;
    Queue<Integer> q2 ;

    public MyStackUseQueue() {
        q1 = new LinkedList<>();
        q2 = new LinkedList<>();
    }

    public void push(int x) {
        if(!q1.isEmpty())
            q1.offer(x);
        else if(!q2.isEmpty())
            q2.offer(x);
        else
            q1.offer(x);
    }

    public int pop() {
        if(empty())
            return -1;
        if(q2.isEmpty()){
            int size = q1.size();
            for(int i = 0; i<size - 1;i++)
                q2.offer(q1.poll());
            int ret = q1.poll();
            return ret;
        }else{
            int size = q2.size();
            for(int i = 0; i<size - 1;i++)
                q1.offer(q2.poll());
            int ret = q2.poll();
            return ret;
        }
    }

    public int top() {
        if(empty())
            return -1;
        if(q2.isEmpty()){
            int val = 0;
            int size = q1.size();
            for(int i = 0; i<size;i++){
                val = q1.poll();
                q2.offer(val);
            }
            return val;
        }else{
            int val = 0;
            int size = q2.size();
            for(int i = 0; i<size;i++){
                val = q2.poll();
                q1.offer(val);
            }
            return val;
        }
    }

    public boolean empty() {
        return q1.isEmpty() && q2.isEmpty();
    }
}

用栈实现队列(LC232)

题目描述

请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):

实现 MyQueue 类:

  • void push(int x) 将元素 x 推到队列的末尾
  • int pop() 从队列的开头移除并返回元素
  • int peek() 返回队列开头的元素
  • boolean empty() 如果队列为空,返回 true ;否则,返回 false

说明:
只能 使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。

示例 1:
输入:
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:[null, null, null, 1, 1, false]
解释:
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false

解题思路

在这里插入图片描述

与上一题类似,用两个栈来实现(s1,s2)队列。指定s1用于入队,s2用于出队

  • void push(int x) 将元素 x 压栈到s1
  • int pop() 返回s2栈顶元素,如果s2为空,则先将s1的所有元素依次压栈到s2中,再返回s2栈顶元素
  • int peek()pop()类似,最后将s2栈顶元素弹出并返回
  • boolean empty() 如果s1s2都为空则返回true

代码示例

import java.util.Stack;

public class MyQueueUseStack {
    Stack<Integer> s1;
    Stack<Integer> s2;

    public MyQueueUseStack() {
        s1 = new Stack<>();
        s2 = new Stack<>();
    }

    public void push(int x) {
        s1.push(x);
    }

    public int pop() {
        if(empty())
            return -1;
        if(s2.isEmpty())
            while(!s1.isEmpty())
                s2.push(s1.pop());
        return s2.pop();
    }

    public int peek() {
        if(empty())
            return -1;
        if(s2.isEmpty())
            while(!s1.isEmpty())
                s2.push(s1.pop());
        return s2.peek();
    }

    public boolean empty() {
        return s1.isEmpty() && s2.isEmpty();
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值