# Developing "How to Think Frequently" with Python, C++, and C
## System Architecture Overview
This cognitive enhancement application combines:
- **Python** for user interface and data visualization
- **C++** for high-performance brainwave analysis
- **C** for low-latency sensor data processing
## Core Components
### 1. Neural Frequency Processor (C++)
```cpp
// neural_processor.cpp - Brainwave pattern analysis
#include <vector>
#include <cmath>
#include <complex>
#include <algorithm>
#include <fftw3.h>
class BrainwaveAnalyzer {
private:
std::vector<double> hamming_window(int N) {
std::vector<double> window(N);
for(int n = 0; n < N; ++n) {
window[n] = 0.54 - 0.46 * cos(2 * M_PI * n / (N - 1));
}
return window;
}
public:
std::vector<double> compute_psd(const std::vector<double>& signal, double fs) {
int N = signal.size();
std::vector<double> window = hamming_window(N);
// Apply window
std::vector<double> windowed_signal(N);
for(int i = 0; i < N; ++i) {
windowed_signal[i] = signal[i] * window[i];
}
// FFT computation using FFTW
fftw_complex *in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);
fftw_complex *out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);
fftw_plan plan = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
for(int i = 0; i < N; ++i) {
in[i][0] = windowed_signal[i]; // Real part
in[i][1] = 0.0; // Imaginary part
}
fftw_execute(plan);
// Calculate power spectrum
std::vector<double> psd(N/2);
for(int i = 0; i < N/2; ++i) {
double re = out[i][0];
double im = out[i][1];
psd[i] = (re*re + im*im) / (fs * N);
}
fftw_destroy_plan(plan);
fftw_free(in);
fftw_free(out);
return psd;
}
std::vector<double> band_powers(const std::vector<double>& psd, double fs) {
// EEG bands: Delta (0.5-4Hz), Theta (4-8Hz), Alpha (8-13Hz), Beta (13-30Hz), Gamma (30-100Hz)
std::vector<std::pair<double, double>> bands = {
{0.5, 4}, {4, 8}, {8, 13}, {13, 30}, {30, 100}
};
std::vector<double> powers(bands.size(), 0.0);
double df = fs / (2 * psd.size());
for(int i = 0; i < psd.size(); ++i) {
double freq = i * df;
for(int b = 0; b < bands.size(); ++b) {
if(freq >= bands[b].first && freq < bands[b].second) {
powers[b] += psd[i] * df;
}
}
}
return powers;
}
double attention_score(const std::vector<double>& band_powers) {
// Simple attention metric: (Beta + Gamma) / (Alpha + Theta)
if(band_powers.size() < 5) return 0.0;
return (band_powers[3] + band_powers[4]) /
(band_powers[1] + band_powers[2] + 1e-10);
}
};
```
### 2. EEG Sensor Interface (C)
```c
// eeg_interface.c - Low-level sensor communication
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/i2c-dev.h>
#define I2C_ADDR 0x48
#define SAMPLE_RATE 256
#define NUM_CHANNELS 8
int init_eeg_device() {
int file;
char filename[20];
snprintf(filename, 19, "/dev/i2c-%d", 1);
if((file = open(filename, O_RDWR)) < 0) {
return -1;
}
if(ioctl(file, I2C_SLAVE, I2C_ADDR) < 0) {
close(file);
return -1;
}
// Configure device
unsigned char config[2] = {0x01, 0x96}; // 256Hz, all channels
write(file, config, 2);
return file;
}
int read_eeg_data(int file, double* buffer, int samples) {
unsigned char raw[2 * NUM_CHANNELS];
int samples_read = 0;
while(samples_read < samples) {
if(read(file, raw, sizeof(raw)) != sizeof(raw)) {
return -1;
}
for(int i = 0; i < NUM_CHANNELS; i++) {
int16_t val = (raw[2*i] << 8) | raw[2*i+1];
buffer[samples_read * NUM_CHANNELS + i] = val * 4.5 / 32768.0; // Convert to µV
}
samples_read++;
}
return 0;
}
void close_eeg_device(int file) {
close(file);
}
```
### 3. Main Application (Python)
```python
# think_frequently_app.py - User interface and training
from flask import Flask, render_template, jsonify
import subprocess
import numpy as np
import matplotlib.pyplot as plt
from io import BytesIO
import base64
from ctypes import CDLL, c_int, c_double, POINTER
import time
app = Flask(__name__)
# Load C EEG library
eeg_lib = CDLL('./eeg_interface.so')
eeg_lib.init_eeg_device.restype = c_int
eeg_lib.read_eeg_data.argtypes = [c_int, POINTER(c_double), c_int]
# Initialize C++ neural processor
neural_process = subprocess.Popen(
['./neural_processor'],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
text=True
)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/start_session')
def start_session():
# Initialize EEG device
eeg_fd = eeg_lib.init_eeg_device()
if eeg_fd < 0:
return jsonify({"status": "error", "message": "EEG device not found"})
# Collect 5 seconds of data (256Hz * 5 = 1280 samples)
buffer = (c_double * (1280 * 8))() # 8 channels
if eeg_lib.read_eeg_data(eeg_fd, buffer, 1280) < 0:
eeg_lib.close_eeg_device(eeg_fd)
return jsonify({"status": "error", "message": "EEG read failed"})
# Send to C++ processor
neural_process.stdin.write(f"PROCESS\n")
for i in range(1280):
for ch in range(8):
neural_process.stdin.write(f"{buffer[i*8 + ch]} ")
neural_process.stdin.write("\n")
neural_process.stdin.write("END_DATA\n")
neural_process.stdin.flush()
# Get results
results = []
while True:
line = neural_process.stdout.readline().strip()
if line == "END_RESULTS":
break
results.append(json.loads(line))
eeg_lib.close_eeg_device(eeg_fd)
# Generate visualization
fig, ax = plt.subplots(2, 1, figsize=(10, 8))
# Time domain plot
time_axis = np.arange(1280) / 256.0
ax[0].plot(time_axis, [buffer[i*8] for i in range(1280)]) # Channel 1
ax[0].set_xlabel('Time (s)')
ax[0].set_ylabel('Amplitude (µV)')
ax[0].set_title('EEG Time Domain')
# Frequency domain plot
bands = ['Delta', 'Theta', 'Alpha', 'Beta', 'Gamma']
ax[1].bar(bands, results[0]['band_powers'])
ax[1].set_xlabel('Frequency Band')
ax[1].set_ylabel('Power (µV²/Hz)')
ax[1].set_title('Brainwave Power Distribution')
plt.tight_layout()
# Save to buffer
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
return jsonify({
"attention_score": results[0]['attention_score'],
"band_powers": results[0]['band_powers'],
"plot": base64.b64encode(buf.read()).decode('utf-8')
})
@app.route('/training/<exercise_type>')
def start_training(exercise_type):
# 5-minute training session
attention_scores = []
start_time = time.time()
eeg_fd = eeg_lib.init_eeg_device()
if eeg_fd < 0:
return jsonify({"status": "error"})
while time.time() - start_time < 300: # 5 minutes
buffer = (c_double * (256 * 8))() # 1 second of data
if eeg_lib.read_eeg_data(eeg_fd, buffer, 256) == 0:
# Process data
neural_process.stdin.write("PROCESS\n")
for i in range(256):
for ch in range(8):
neural_process.stdin.write(f"{buffer[i*8 + ch]} ")
neural_process.stdin.write("\n")
neural_process.stdin.write("END_DATA\n")
neural_process.stdin.flush()
# Get attention score
line = neural_process.stdout.readline().strip()
if line != "END_RESULTS":
result = json.loads(line)
attention_scores.append(result['attention_score'])
eeg_lib.close_eeg_device(eeg_fd)
# Generate training report
fig, ax = plt.subplots(figsize=(10, 4))
ax.plot(np.arange(len(attention_scores)), attention_scores)
ax.set_xlabel('Time (s)')
ax.set_ylabel('Attention Score')
ax.set_title(f'{exercise_type} Training Performance')
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
avg_score = np.mean(attention_scores) if attention_scores else 0
max_score = np.max(attention_scores) if attention_scores else 0
return jsonify({
"exercise_type": exercise_type,
"average_score": avg_score,
"max_score": max_score,
"plot": base64.b64encode(buf.read()).decode('utf-8')
})
if __name__ == '__main__':
app.run(port=5000)
```
## Key Features
### 1. Brainwave Analysis (C++)
- Fast Fourier Transform for frequency analysis
- Power spectral density calculation
- Cognitive state metrics (attention, relaxation)
### 2. Sensor Integration (C)
- Low-latency EEG data acquisition
- Hardware-level signal processing
- Real-time data streaming
### 3. Cognitive Training (Python)
- Interactive neurofeedback exercises
- Performance visualization
- Adaptive training protocols
## Advanced Components
### 1. Machine Learning Classifier (C++)
```cpp
// mind_state_classifier.cpp - Cognitive state detection
#include <vector>
#include <cmath>
#include <numeric>
#include <algorithm>
class MindStateClassifier {
private:
std::vector<std::vector<double>> focus_patterns;
std::vector<std::vector<double>> relax_patterns;
public:
void load_patterns() {
// In production: load from trained model
focus_patterns = {
{0.1, 0.2, 0.3, 0.8, 0.7}, // High beta/gamma
{0.1, 0.2, 0.2, 0.9, 0.6}
};
relax_patterns = {
{0.3, 0.5, 0.9, 0.2, 0.1}, // High alpha/theta
{0.4, 0.6, 0.8, 0.1, 0.1}
};
}
double classify_state(const std::vector<double>& band_powers) {
if(band_powers.size() != 5) return 0.0;
// Normalize band powers
double sum = std::accumulate(band_powers.begin(), band_powers.end(), 0.0);
if(sum < 1e-10) return 0.0;
std::vector<double> normalized(5);
for(int i = 0; i < 5; ++i) {
normalized[i] = band_powers[i] / sum;
}
// Calculate similarity to focus patterns
double focus_sim = 0.0;
for(const auto& pattern : focus_patterns) {
double sim = 0.0;
for(int i = 0; i < 5; ++i) {
sim += pattern[i] * normalized[i];
}
focus_sim = std::max(focus_sim, sim);
}
// Calculate similarity to relax patterns
double relax_sim = 0.0;
for(const auto& pattern : relax_patterns) {
double sim = 0.0;
for(int i = 0; i < 5; ++i) {
sim += pattern[i] * normalized[i];
}
relax_s