Python, C, C ++ are applicated to develop the app “how to think frequent ly ”

# Developing "How to Think Frequently" with Python, C++, and C

## System Architecture Overview

This cognitive enhancement application combines:
- **Python** for user interface and data visualization
- **C++** for high-performance brainwave analysis
- **C** for low-latency sensor data processing

## Core Components

### 1. Neural Frequency Processor (C++)
```cpp
// neural_processor.cpp - Brainwave pattern analysis
#include <vector>
#include <cmath>
#include <complex>
#include <algorithm>
#include <fftw3.h>

class BrainwaveAnalyzer {
private:
    std::vector<double> hamming_window(int N) {
        std::vector<double> window(N);
        for(int n = 0; n < N; ++n) {
            window[n] = 0.54 - 0.46 * cos(2 * M_PI * n / (N - 1));
        }
        return window;
    }

public:
    std::vector<double> compute_psd(const std::vector<double>& signal, double fs) {
        int N = signal.size();
        std::vector<double> window = hamming_window(N);
        
        // Apply window
        std::vector<double> windowed_signal(N);
        for(int i = 0; i < N; ++i) {
            windowed_signal[i] = signal[i] * window[i];
        }
        
        // FFT computation using FFTW
        fftw_complex *in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);
        fftw_complex *out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);
        fftw_plan plan = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
        
        for(int i = 0; i < N; ++i) {
            in[i][0] = windowed_signal[i]; // Real part
            in[i][1] = 0.0;               // Imaginary part
        }
        
        fftw_execute(plan);
        
        // Calculate power spectrum
        std::vector<double> psd(N/2);
        for(int i = 0; i < N/2; ++i) {
            double re = out[i][0];
            double im = out[i][1];
            psd[i] = (re*re + im*im) / (fs * N);
        }
        
        fftw_destroy_plan(plan);
        fftw_free(in);
        fftw_free(out);
        
        return psd;
    }
    
    std::vector<double> band_powers(const std::vector<double>& psd, double fs) {
        // EEG bands: Delta (0.5-4Hz), Theta (4-8Hz), Alpha (8-13Hz), Beta (13-30Hz), Gamma (30-100Hz)
        std::vector<std::pair<double, double>> bands = {
            {0.5, 4}, {4, 8}, {8, 13}, {13, 30}, {30, 100}
        };
        
        std::vector<double> powers(bands.size(), 0.0);
        double df = fs / (2 * psd.size());
        
        for(int i = 0; i < psd.size(); ++i) {
            double freq = i * df;
            for(int b = 0; b < bands.size(); ++b) {
                if(freq >= bands[b].first && freq < bands[b].second) {
                    powers[b] += psd[i] * df;
                }
            }
        }
        
        return powers;
    }
    
    double attention_score(const std::vector<double>& band_powers) {
        // Simple attention metric: (Beta + Gamma) / (Alpha + Theta)
        if(band_powers.size() < 5) return 0.0;
        return (band_powers[3] + band_powers[4]) / 
               (band_powers[1] + band_powers[2] + 1e-10);
    }
};
```

### 2. EEG Sensor Interface (C)
```c
// eeg_interface.c - Low-level sensor communication
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/i2c-dev.h>

#define I2C_ADDR 0x48
#define SAMPLE_RATE 256
#define NUM_CHANNELS 8

int init_eeg_device() {
    int file;
    char filename[20];
    
    snprintf(filename, 19, "/dev/i2c-%d", 1);
    if((file = open(filename, O_RDWR)) < 0) {
        return -1;
    }
    
    if(ioctl(file, I2C_SLAVE, I2C_ADDR) < 0) {
        close(file);
        return -1;
    }
    
    // Configure device
    unsigned char config[2] = {0x01, 0x96}; // 256Hz, all channels
    write(file, config, 2);
    
    return file;
}

int read_eeg_data(int file, double* buffer, int samples) {
    unsigned char raw[2 * NUM_CHANNELS];
    int samples_read = 0;
    
    while(samples_read < samples) {
        if(read(file, raw, sizeof(raw)) != sizeof(raw)) {
            return -1;
        }
        
        for(int i = 0; i < NUM_CHANNELS; i++) {
            int16_t val = (raw[2*i] << 8) | raw[2*i+1];
            buffer[samples_read * NUM_CHANNELS + i] = val * 4.5 / 32768.0; // Convert to µV
        }
        
        samples_read++;
    }
    
    return 0;
}

void close_eeg_device(int file) {
    close(file);
}
```

### 3. Main Application (Python)
```python
# think_frequently_app.py - User interface and training
from flask import Flask, render_template, jsonify
import subprocess
import numpy as np
import matplotlib.pyplot as plt
from io import BytesIO
import base64
from ctypes import CDLL, c_int, c_double, POINTER
import time

app = Flask(__name__)

# Load C EEG library
eeg_lib = CDLL('./eeg_interface.so')
eeg_lib.init_eeg_device.restype = c_int
eeg_lib.read_eeg_data.argtypes = [c_int, POINTER(c_double), c_int]

# Initialize C++ neural processor
neural_process = subprocess.Popen(
    ['./neural_processor'],
    stdin=subprocess.PIPE,
    stdout=subprocess.PIPE,
    text=True
)

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/start_session')
def start_session():
    # Initialize EEG device
    eeg_fd = eeg_lib.init_eeg_device()
    if eeg_fd < 0:
        return jsonify({"status": "error", "message": "EEG device not found"})
    
    # Collect 5 seconds of data (256Hz * 5 = 1280 samples)
    buffer = (c_double * (1280 * 8))()  # 8 channels
    if eeg_lib.read_eeg_data(eeg_fd, buffer, 1280) < 0:
        eeg_lib.close_eeg_device(eeg_fd)
        return jsonify({"status": "error", "message": "EEG read failed"})
    
    # Send to C++ processor
    neural_process.stdin.write(f"PROCESS\n")
    for i in range(1280):
        for ch in range(8):
            neural_process.stdin.write(f"{buffer[i*8 + ch]} ")
        neural_process.stdin.write("\n")
    neural_process.stdin.write("END_DATA\n")
    neural_process.stdin.flush()
    
    # Get results
    results = []
    while True:
        line = neural_process.stdout.readline().strip()
        if line == "END_RESULTS":
            break
        results.append(json.loads(line))
    
    eeg_lib.close_eeg_device(eeg_fd)
    
    # Generate visualization
    fig, ax = plt.subplots(2, 1, figsize=(10, 8))
    
    # Time domain plot
    time_axis = np.arange(1280) / 256.0
    ax[0].plot(time_axis, [buffer[i*8] for i in range(1280)])  # Channel 1
    ax[0].set_xlabel('Time (s)')
    ax[0].set_ylabel('Amplitude (µV)')
    ax[0].set_title('EEG Time Domain')
    
    # Frequency domain plot
    bands = ['Delta', 'Theta', 'Alpha', 'Beta', 'Gamma']
    ax[1].bar(bands, results[0]['band_powers'])
    ax[1].set_xlabel('Frequency Band')
    ax[1].set_ylabel('Power (µV²/Hz)')
    ax[1].set_title('Brainwave Power Distribution')
    
    plt.tight_layout()
    
    # Save to buffer
    buf = BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    plt.close()
    
    return jsonify({
        "attention_score": results[0]['attention_score'],
        "band_powers": results[0]['band_powers'],
        "plot": base64.b64encode(buf.read()).decode('utf-8')
    })

@app.route('/training/<exercise_type>')
def start_training(exercise_type):
    # 5-minute training session
    attention_scores = []
    start_time = time.time()
    
    eeg_fd = eeg_lib.init_eeg_device()
    if eeg_fd < 0:
        return jsonify({"status": "error"})
    
    while time.time() - start_time < 300:  # 5 minutes
        buffer = (c_double * (256 * 8))()  # 1 second of data
        if eeg_lib.read_eeg_data(eeg_fd, buffer, 256) == 0:
            # Process data
            neural_process.stdin.write("PROCESS\n")
            for i in range(256):
                for ch in range(8):
                    neural_process.stdin.write(f"{buffer[i*8 + ch]} ")
                neural_process.stdin.write("\n")
            neural_process.stdin.write("END_DATA\n")
            neural_process.stdin.flush()
            
            # Get attention score
            line = neural_process.stdout.readline().strip()
            if line != "END_RESULTS":
                result = json.loads(line)
                attention_scores.append(result['attention_score'])
    
    eeg_lib.close_eeg_device(eeg_fd)
    
    # Generate training report
    fig, ax = plt.subplots(figsize=(10, 4))
    ax.plot(np.arange(len(attention_scores)), attention_scores)
    ax.set_xlabel('Time (s)')
    ax.set_ylabel('Attention Score')
    ax.set_title(f'{exercise_type} Training Performance')
    
    buf = BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    plt.close()
    
    avg_score = np.mean(attention_scores) if attention_scores else 0
    max_score = np.max(attention_scores) if attention_scores else 0
    
    return jsonify({
        "exercise_type": exercise_type,
        "average_score": avg_score,
        "max_score": max_score,
        "plot": base64.b64encode(buf.read()).decode('utf-8')
    })

if __name__ == '__main__':
    app.run(port=5000)
```

## Key Features

### 1. Brainwave Analysis (C++)
- Fast Fourier Transform for frequency analysis
- Power spectral density calculation
- Cognitive state metrics (attention, relaxation)

### 2. Sensor Integration (C)
- Low-latency EEG data acquisition
- Hardware-level signal processing
- Real-time data streaming

### 3. Cognitive Training (Python)
- Interactive neurofeedback exercises
- Performance visualization
- Adaptive training protocols

## Advanced Components

### 1. Machine Learning Classifier (C++)
```cpp
// mind_state_classifier.cpp - Cognitive state detection
#include <vector>
#include <cmath>
#include <numeric>
#include <algorithm>

class MindStateClassifier {
private:
    std::vector<std::vector<double>> focus_patterns;
    std::vector<std::vector<double>> relax_patterns;
    
public:
    void load_patterns() {
        // In production: load from trained model
        focus_patterns = {
            {0.1, 0.2, 0.3, 0.8, 0.7}, // High beta/gamma
            {0.1, 0.2, 0.2, 0.9, 0.6}
        };
        
        relax_patterns = {
            {0.3, 0.5, 0.9, 0.2, 0.1}, // High alpha/theta
            {0.4, 0.6, 0.8, 0.1, 0.1}
        };
    }
    
    double classify_state(const std::vector<double>& band_powers) {
        if(band_powers.size() != 5) return 0.0;
        
        // Normalize band powers
        double sum = std::accumulate(band_powers.begin(), band_powers.end(), 0.0);
        if(sum < 1e-10) return 0.0;
        
        std::vector<double> normalized(5);
        for(int i = 0; i < 5; ++i) {
            normalized[i] = band_powers[i] / sum;
        }
        
        // Calculate similarity to focus patterns
        double focus_sim = 0.0;
        for(const auto& pattern : focus_patterns) {
            double sim = 0.0;
            for(int i = 0; i < 5; ++i) {
                sim += pattern[i] * normalized[i];
            }
            focus_sim = std::max(focus_sim, sim);
        }
        
        // Calculate similarity to relax patterns
        double relax_sim = 0.0;
        for(const auto& pattern : relax_patterns) {
            double sim = 0.0;
            for(int i = 0; i < 5; ++i) {
                sim += pattern[i] * normalized[i];
            }
            relax_s

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值