MATLAB神经网络,支持向量机,随机森林,径向基函数,长短期记忆网络等
直接替换Excel数据即可。
包括12个回归,10个分类,10个时间序列的预测,共32套代码。如图3/4/5的序号和算法与发货文件对应。
文章目录
下面我将提供一些基础示例代码,用于在MATLAB中实现神经网络、支持向量机(SVM)、随机森林、径向基函数(RBF)网络和长短期记忆(LSTM)网络。这些示例假设你已经有了一个数据集,并且已经完成了必要的预处理步骤。
1. 神经网络
% 加载样本数据
load iris_dataset % MATLAB自带的鸢尾花数据集作为例子
inputs = meas';
targets = dummyvar(species');
% 创建并训练一个两层前馈神经网络
hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize);
[net,tr] = train(net,inputs,targets);
% 使用网络进行预测
outputs = net(inputs);
2. 支持向量机 (SVM)
对于分类问题:
% 加载样本数据
load fisheriris % 使用另一个内置数据集
X = meas(51:end,3:4); % 只使用后两个特征
Y = species(51:end); % 仅使用两类
% 训练SVM模型
SVMModel = fitcsvm(X,Y,'KernelFunction','rbf','ClassNames',{'versicolor','virginica'});
% 预测新数据点
[label,score] = predict(SVMModel,newX);
3. 随机森林
MATLAB中没有直接提供随机森林的函数,但可以通过TreeBagger
来实现:
% 加载样本数据
load fisheriris
X = meas;
Y = species;
% 创建随机森林
rng(1); % 设置随机种子以便结果可重复
Mdl = TreeBagger(100,X,Y,'Method','classification');
% 预测
[Yfit,scores] = predict(Mdl,X);
4. 径向基函数 (RBF) 网络
可以使用自定义的RBF网络或通过调整神经网络的隐层参数来近似实现:
% 加载样本数据
load simpleclass_dataset % 假设这是一个简单的分类数据集
% 定义RBF网络结构
net = newrbe(simpleclassInputs,simpleclassTargets,spread=1);
% 使用网络进行预测
outputs = net(simpleclassInputs);
请注意,newrbe
是MATLAB中的一个函数,用于创建一个基于RBF的回归/分类网络。你需要根据你的具体需求调整输入和目标数据。
5. 长短期记忆网络 (LSTM)
% 准备序列数据
sequences = ...; % 序列数据
YTrain = ...; % 目标数据
% 定义LSTM网络架构
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
% 指定训练选项
options = trainingOptions('adam', ...
'MaxEpochs',100, ...
'MiniBatchSize',50, ...
'InitialLearnRate',0.01, ...
'GradientThreshold',1, ...
'Verbose',0, ...
'Plots','training-progress');
% 训练LSTM网络
net = trainNetwork(sequences,YTrain,layers,options);
以上代码提供了基本框架,实际应用时需要根据具体的数据集和问题需求进行适当调整。例如,数据预处理、网络架构设计、超参数优化等都是影响模型性能的重要因素。希望这些示例能够帮助你开始在MATLAB中使用这些机器学习方法。
为了帮助你更好地理解如何在MATLAB中实现神经网络、支持向量机(SVM)、随机森林、径向基函数(RBF)网络和长短期记忆(LSTM)网络,并附上相应的代码示例,我将逐一提供这些模型的基本实现代码。
1. 神经网络
% 加载数据
load simpleclass_dataset % 假设这是一个简单的分类数据集
% 创建并训练一个两层前馈神经网络
hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize);
[net,tr] = train(net,simpleclassInputs,simpleclassTargets);
% 使用网络进行预测
outputs = net(simpleclassInputs);
2. 支持向量机 (SVM)
% 加载数据
load fisheriris
X = meas;
Y = species;
% 训练SVM模型
SVMModel = fitcsvm(X,Y,'KernelFunction','rbf');
% 预测新数据点
[label,score] = predict(SVMModel,X);
3. 随机森林
% 加载数据
load fisheriris
X = meas;
Y = species;
% 创建随机森林
rng(1); % 设置随机种子以便结果可重复
Mdl = TreeBagger(100,X,Y,'Method','classification');
% 预测
[Yfit,scores] = predict(Mdl,X);
4. 径向基函数 (RBF) 网络
% 加载数据
load simpleclass_dataset % 假设这是一个简单的分类数据集
% 定义RBF网络结构
net = newrb(simpleclassInputs,simpleclassTargets,0.01);
% 使用网络进行预测
outputs = net(simpleclassInputs);
5. 长短期记忆网络 (LSTM)
% 准备序列数据
sequences = ...; % 序列数据
YTrain = ...; % 目标数据
% 定义LSTM网络架构
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
% 指定训练选项
options = trainingOptions('adam', ...
'MaxEpochs',100, ...
'MiniBatchSize',50, ...
'InitialLearnRate',0.01, ...
'GradientThreshold',1, ...
'Verbose',0, ...
'Plots','training-progress');
% 训练LSTM网络
net = trainNetwork(sequences,YTrain,layers,options);
示例代码汇总
% 神经网络
hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize);
[net,tr] = train(net,simpleclassInputs,simpleclassTargets);
outputs = net(simpleclassInputs);
% SVM
SVMModel = fitcsvm(X,Y,'KernelFunction','rbf');
[label,score] = predict(SVMModel,X);
% 随机森林
rng(1);
Mdl = TreeBagger(100,X,Y,'Method','classification');
[Yfit,scores] = predict(Mdl,X);
% RBF
net = newrb(simpleclassInputs,simpleclassTargets,0.01);
outputs = net(simpleclassInputs);
% LSTM
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'MaxEpochs',100, ...
'MiniBatchSize',50, ...
'InitialLearnRate',0.01, ...
'GradientThreshold',1, ...
'Verbose',0, ...
'Plots','training-progress');
net = trainNetwork(sequences,YTrain,layers,options);
希望这些代码示例能够帮助你开始在MATLAB中使用这些机器学习方法。
为了帮助你更好地理解如何在MATLAB中实现神经网络、支持向量机(SVM)、随机森林、径向基函数(RBF)网络和长短期记忆(LSTM)网络,并附上相应的代码示例,我将逐一提供这些模型的基本实现代码。以下是一些基本的示例代码:
1. 神经网络
% 加载数据
load simpleclass_dataset % 假设这是一个简单的分类数据集
% 创建并训练一个两层前馈神经网络
hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize);
[net,tr] = train(net,simpleclassInputs,simpleclassTargets);
% 使用网络进行预测
outputs = net(simpleclassInputs);
2. 支持向量机 (SVM)
% 加载数据
load fisheriris
X = meas;
Y = species;
% 训练SVM模型
SVMModel = fitcsvm(X,Y,'KernelFunction','rbf');
% 预测新数据点
[label,score] = predict(SVMModel,X);
3. 随机森林
% 加载数据
load fisheriris
X = meas;
Y = species;
% 创建随机森林
rng(1); % 设置随机种子以便结果可重复
Mdl = TreeBagger(100,X,Y,'Method','classification');
% 预测
[Yfit,scores] = predict(Mdl,X);
4. 径向基函数 (RBF) 网络
% 加载数据
load simpleclass_dataset % 假设这是一个简单的分类数据集
% 定义RBF网络结构
net = newrb(simpleclassInputs,simpleclassTargets,0.01);
% 使用网络进行预测
outputs = net(simpleclassInputs);
5. 长短期记忆网络 (LSTM)
% 准备序列数据
sequences = ...; % 序列数据
YTrain = ...; % 目标数据
% 定义LSTM网络架构
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
% 指定训练选项
options = trainingOptions('adam', ...
'MaxEpochs',100, ...
'MiniBatchSize',50, ...
'InitialLearnRate',0.01, ...
'GradientThreshold',1, ...
'Verbose',0, ...
'Plots','training-progress');
% 训练LSTM网络
net = trainNetwork(sequences,YTrain,layers,options);
示例代码汇总
% 神经网络
hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize);
[net,tr] = train(net,simpleclassInputs,simpleclassTargets);
outputs = net(simpleclassInputs);
% SVM
SVMModel = fitcsvm(X,Y,'KernelFunction','rbf');
[label,score] = predict(SVMModel,X);
% 随机森林
rng(1);
Mdl = TreeBagger(100,X,Y,'Method','classification');
[Yfit,scores] = predict(Mdl,X);
% RBF
net = newrb(simpleclassInputs,simpleclassTargets,0.01);
outputs = net(simpleclassInputs);
% LSTM
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'MaxEpochs',100, ...
'MiniBatchSize',50, ...
'InitialLearnRate',0.01, ...
'GradientThreshold',1, ...
'Verbose',0, ...
'Plots','training-progress');
net = trainNetwork(sequences,YTrain,layers,options);
绘制预测结果对比图
假设你已经完成了模型的训练和预测,以下是绘制预测结果对比图的代码示例:
% 假设你已经有了真实值和预测值
true_values = ...; % 真实值
predicted_values = ...; % 预测值
% 计算RMSE
rmse = sqrt(mean((true_values - predicted_values).^2));
% 绘制预测结果对比图
figure;
plot(true_values, 'r*', 'DisplayName', '真实值');
hold on;
plot(predicted_values, 'b-o', 'DisplayName', '预测值');
title(['训练集预测结果对比: RMSE=' num2str(rmse)]);
xlabel('预测样本');
ylabel('预测结果');
legend('Location', 'best');
grid on;
hold off;
希望这些代码示例能够帮助你开始在MATLAB中使用这些机器学习方法。
)
为了帮助你更好地理解如何在MATLAB中实现神经网络、支持向量机(SVM)、随机森林、径向基函数(RBF)网络和长短期记忆(LSTM)网络,并附上相应的代码示例,我将逐一提供这些模型的基本实现代码。以下是一些基本的示例代码:
1. 神经网络
% 加载数据
load simpleclass_dataset % 假设这是一个简单的分类数据集
% 创建并训练一个两层前馈神经网络
hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize);
[net,tr] = train(net,simpleclassInputs,simpleclassTargets);
% 使用网络进行预测
outputs = net(simpleclassInputs);
2. 支持向量机 (SVM)
% 加载数据
load fisheriris
X = meas;
Y = species;
% 训练SVM模型
SVMModel = fitcsvm(X,Y,'KernelFunction','rbf');
% 预测新数据点
[label,score] = predict(SVMModel,X);
3. 随机森林
% 加载数据
load fisheriris
X = meas;
Y = species;
% 创建随机森林
rng(1); % 设置随机种子以便结果可重复
Mdl = TreeBagger(100,X,Y,'Method','classification');
% 预测
[Yfit,scores] = predict(Mdl,X);
4. 径向基函数 (RBF) 网络
% 加载数据
load simpleclass_dataset % 假设这是一个简单的分类数据集
% 定义RBF网络结构
net = newrb(simpleclassInputs,simpleclassTargets,0.01);
% 使用网络进行预测
outputs = net(simpleclassInputs);
5. 长短期记忆网络 (LSTM)
% 准备序列数据
sequences = ...; % 序列数据
YTrain = ...; % 目标数据
% 定义LSTM网络架构
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
% 指定训练选项
options = trainingOptions('adam', ...
'MaxEpochs',100, ...
'MiniBatchSize',50, ...
'InitialLearnRate',0.01, ...
'GradientThreshold',1, ...
'Verbose',0, ...
'Plots','training-progress');
% 训练LSTM网络
net = trainNetwork(sequences,YTrain,layers,options);
示例代码汇总
% 神经网络
hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize);
[net,tr] = train(net,simpleclassInputs,simpleclassTargets);
outputs = net(simpleclassInputs);
% SVM
SVMModel = fitcsvm(X,Y,'KernelFunction','rbf');
[label,score] = predict(SVMModel,X);
% 随机森林
rng(1);
Mdl = TreeBagger(100,X,Y,'Method','classification');
[Yfit,scores] = predict(Mdl,X);
% RBF
net = newrb(simpleclassInputs,simpleclassTargets,0.01);
outputs = net(simpleclassInputs);
% LSTM
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'MaxEpochs',100, ...
'MiniBatchSize',50, ...
'InitialLearnRate',0.01, ...
'GradientThreshold',1, ...
'Verbose',0, ...
'Plots','training-progress');
net = trainNetwork(sequences,YTrain,layers,options);
绘制预测结果对比图
假设你已经完成了模型的训练和预测,以下是绘制预测结果对比图的代码示例:
% 假设你已经有了真实值和预测值
true_values = ...; % 真实值
predicted_values = ...; % 预测值
% 计算RMSE
rmse = sqrt(mean((true_values - predicted_values).^2));
% 绘制预测结果对比图
figure;
plot(true_values, 'r*', 'DisplayName', '真实值');
hold on;
plot(predicted_values, 'b-o', 'DisplayName', '预测值');
title(['训练集预测结果对比: RMSE=' num2str(rmse)]);
xlabel('预测样本');
ylabel('预测结果');
legend('Location', 'best');
grid on;
hold off;
希望这些代码示例能够帮助你开始在MATLAB中使用这些机器学习方法。