基于Matlab的鸟类物种识别增强分割提取检测系统GUI

基于Matlab的鸟类物种识别增强分割提取检测系统GUI

它是一款针对多种鸟类物种的识别和信息展示平台。该系统利用VGG19深度学习模型进行训练,能够准确识别多达50种鸟类,包括红树林杜鹃等种类,同时提供关于鸟类的详细信息,如物种简介、繁殖习性、生活环境、迁徙模式、寿命等。系统还集成了图像预处理工具,如直方图增强、中值滤波、灰度处理和图像分割,使用户能够对图像进行细致处理,从而提高识别的准确性和稳定性。

主要功能:
本系统集成了多种鸟类识别、信息展示和图像处理功能,为用户提供全方位的鸟类信息和图像处理体验。
鸟类识别与信息展示:
该功能是系统的核心模块,通过用户上传的鸟类图像,系统利用VGG19深度学习模型进行识别。系统能够从多达50种鸟类数据库中识别出上传图像中的鸟类,并显示其详细信息,包括鸟类的物种简介、主要特征、生活习性、生态环境和保护状态等。

繁殖习性与生活习性展示:
系统为每种鸟类提供繁殖习性和生活习性展示模块。繁殖习性模块包括鸟类繁殖信息等信息,帮助用户深入了解不同鸟类的繁殖行为。

鸟类寿命与迁徙模式:
对于每种鸟类,系统提供详细的寿命和迁徙信息。鸟类寿命模块包括该鸟类的平均寿命及影响寿命的生态因素,如天敌和栖息地变化。

图像预处理模块:
系统内置了多种图像预处理功能,用户可以在识别前对图像进行优化和处理。
直方图均衡化:用于调整图像的亮度和对比度,使暗部和亮部的细节更加清晰,有助于识别过程中特征的提取。
中值滤波:去除图像中的椒盐噪声,同时保留图像边缘的细节,使鸟类轮廓更加明显,从而提高边缘检测和图像分割的效果。
灰度处理:将彩色图像转换为单通道灰度图像,简化图像信息,降低计算复杂度,同时增强识别速度。
图像分割:通过对图像的颜色和纹理进行分析,将鸟类从背景中分离出来,使得特征提取和分类更加准确。
实时显示与可视化功能:
系统配备了实时显示模块,用户上传图像后,可以实时看到图像处理的结果,包括边缘提取、分割效果和滤波前后的变化。通过可视化的方式,用户可以更加直观地观察每一步图像处理的效果,并根据需要调整处理参数。

主要算法及其应用:
系统使用了经过预训练的VGG19卷积神经网络模型来识别鸟类种类。这种模型通过迁移学习方法进行再训练,能够高效地提取鸟类图像中的特征,如羽毛的颜色、形状和纹理,并根据这些特征进行种类判别。在实际应用中,用户上传的鸟类图像会经过预处理后输入到VGG19模型中进行识别,从而给出最匹配的鸟类种类及相关信息。

直方图均衡化:
用于调节图像对比度的算法,将图像的像素值分布均匀化,改善过暗或过亮区域的细节,使得鸟类特征(如羽毛纹理)更加清晰。这一算法对后续的边缘检测和分割步骤至关重要。

中值滤波:
中值滤波是一种经典的图像去噪算法,尤其适用于去除椒盐噪声。这一算法能够在不影响鸟类轮廓的情况下平滑图像,使得边缘检测和图像分割的效果更好。

灰度处理:
灰度处理将彩色图像转换为灰度图像,减少图像通道数,从而降低计算复杂度。在简化图像信息的同时,该算法保证了鸟类轮廓和细节的完整性,为后续的边缘检测和特征提取打下基础。

图像分割算法:
图像分割算法分析图像的颜色和纹理特征,将鸟类与背景分离,使得鸟类特征更加突出。通过精准的分割,系统能够更好地提取鸟类的特征,从而提高识别的准确性。
在这里插入图片描述


以下是一个基于Matlab的鸟类物种识别增强分割提取检测系统的GUI代码示例。该系统集成了VGG19深度学习模型、图像预处理功能(直方图均衡化、中值滤波、灰度处理、图像分割)以及实时显示和可视化模块。


主程序代码

% 鸟类物种识别增强分割提取检测系统 GUI
function BirdSpeciesRecognitionGUI
    % 创建主窗口
    fig = uifigure('Name', '鸟类物种识别与信息展示系统', 'Position', [100, 100, 800, 600]);
    
    % 添加菜单按钮
    btnLoad = uibutton(fig, 'push', 'Text', '加载鸟类图像', 'Position', [50, 500, 200, 30], ...
        'ButtonPushedFcn', @(btn, event) loadImage(fig));
    
    btnHistogram = uibutton(fig, 'push', 'Text', '直方图均衡化', 'Position', [50, 450, 200, 30], ...
        'ButtonPushedFcn', @(btn, event) applyHistogramEqualization(fig));
    
    btnMedianFilter = uibutton(fig, 'push', 'Text', '中值滤波', 'Position', [50, 400, 200, 30], ...
        'ButtonPushedFcn', @(btn, event) applyMedianFilter(fig));
    
    btnGrayScale = uibutton(fig, 'push', 'Text', '灰度处理', 'Position', [50, 350, 200, 30], ...
        'ButtonPushedFcn', @(btn, event) convertToGrayscale(fig));
    
    btnSegmentation = uibutton(fig, 'push', 'Text', '图像分割', 'Position', [50, 300, 200, 30], ...
        'ButtonPushedFcn', @(btn, event) applyImageSegmentation(fig));
    
    btnIdentifyBird = uibutton(fig, 'push', 'Text', '识别鸟类', 'Position', [50, 250, 200, 30], ...
        'ButtonPushedFcn', @(btn, event) identifyBirdSpecies(fig));
    
    % 显示区域
    axOriginal = uiaxes(fig, 'Position', [300, 300, 400, 250]);
    axProcessed = uiaxes(fig, 'Position', [300, 50, 400, 250]);
    
    % 全局变量存储图像和模型
    global originalImage processedImage model;
    originalImage = [];
    processedImage = [];
    
    % 加载预训练的VGG19模型
    model = loadVGG19Model();
end

% 加载预训练的VGG19模型
function model = loadVGG19Model
    disp('正在加载VGG19模型...');
    model = vgg19(); % 加载VGG19预训练模型
    disp('模型加载完成!');
end

% 加载鸟类图像
function loadImage(fig)
    global originalImage axOriginal;
    [file, path] = uigetfile({'*.jpg;*.png;*.tif', '图像文件 (*.jpg, *.png, *.tif)'});
    if isequal(file, 0)
        return;
    end
    filePath = fullfile(path, file);
    originalImage = imread(filePath);
    imshow(originalImage, 'Parent', axOriginal);
    title(axOriginal, '原始鸟类图像');
end

% 直方图均衡化
function applyHistogramEqualization(fig)
    global originalImage processedImage axProcessed;
    if isempty(originalImage)
        uialert(fig, '请先加载鸟类图像!', '错误');
        return;
    end
    
    grayImage = rgb2gray(originalImage);
    equalizedImage = histeq(grayImage);
    processedImage = equalizedImage;
    imshow(processedImage, 'Parent', axProcessed);
    title(axProcessed, '直方图均衡化后的图像');
end

% 中值滤波
function applyMedianFilter(fig)
    global originalImage processedImage axProcessed;
    if isempty(originalImage)
        uialert(fig, '请先加载鸟类图像!', '错误');
        return;
    end
    
    filteredImage = medfilt2(rgb2gray(originalImage), [3 3]);
    processedImage = filteredImage;
    imshow(processedImage, 'Parent', axProcessed);
    title(axProcessed, '中值滤波后的图像');
end

% 灰度处理
function convertToGrayscale(fig)
    global originalImage processedImage axProcessed;
    if isempty(originalImage)
        uialert(fig, '请先加载鸟类图像!', '错误');
        return;
    end
    
    grayImage = rgb2gray(originalImage);
    processedImage = grayImage;
    imshow(processedImage, 'Parent', axProcessed);
    title(axProcessed, '灰度处理后的图像');
end

% 图像分割
function applyImageSegmentation(fig)
    global originalImage processedImage axProcessed;
    if isempty(originalImage)
        uialert(fig, '请先加载鸟类图像!', '错误');
        return;
    end
    
    grayImage = rgb2gray(originalImage);
    threshold = graythresh(grayImage); % 自动计算阈值
    binaryImage = imbinarize(grayImage, threshold);
    processedImage = binaryImage;
    imshow(processedImage, 'Parent', axProcessed);
    title(axProcessed, '图像分割后的结果');
end

% 识别鸟类物种
function identifyBirdSpecies(fig)
    global processedImage model axProcessed;
    if isempty(processedImage)
        uialert(fig, '请先进行图像预处理!', '错误');
        return;
    end
    
    % 调整图像大小以适应模型输入
    inputSize = [224, 224];
    resizedImage = imresize(processedImage, inputSize);
    inputImage = single(resizedImage) / 255; % 归一化
    inputImage = repmat(inputImage, [1, 1, 3]); % 转换为RGB图像
    
    % 使用VGG19进行分类
    label = classify(model, inputImage);
    
    % 显示分类结果
    resultText = sprintf('识别结果: %s', char(label));
    title(axProcessed, resultText);
    disp(resultText);
end

功能说明

  1. 加载鸟类图像

    • 用户可以通过“加载鸟类图像”按钮选择一幅鸟类图像。
    • 图像会显示在左侧的axOriginal轴上。
  2. 直方图均衡化

    • 增强图像对比度,使暗部和亮部的细节更加清晰。
  3. 中值滤波

    • 去除图像中的椒盐噪声,同时保留鸟类轮廓的细节。
  4. 灰度处理

    • 将彩色图像转换为单通道灰度图像,简化图像信息,降低计算复杂度。
  5. 图像分割

    • 将鸟类从背景中分离出来,使得特征提取和分类更加准确。
  6. 识别鸟类物种

    • 使用VGG19模型对预处理后的图像进行分类。
    • 分类结果会在axProcessed轴的标题中显示,并打印到命令窗口。

注意事项

  1. VGG19模型

    • 确保安装了Matlab的Deep Learning Toolbox。
    • 如果未内置VGG19模型,需要从Matlab官方资源下载或使用其他预训练模型替换。
  2. 图像格式

    • 支持常见的图像格式(如.jpg, .png, .tif)。
  3. 扩展功能

    • 可以进一步扩展系统功能,例如添加更多鸟类信息展示模块、支持批量处理等。

在这里插入图片描述
为了实现一个基于Matlab的鸟类物种识别增强分割提取检测系统的GUI,我们可以使用Matlab的图形用户界面(GUI)工具箱。以下是一个示例代码,该代码包括图像加载、预处理(直方图均衡化、中值滤波、灰度处理和图像分割)、鸟类识别以及信息展示等功能。

代码示例

% 鸟类种类物种识别检测系统 GUI
function BirdSpeciesRecognitionSystem
    % 创建主窗口
    fig = uifigure('Name', '鸟类种类物种识别检测系统', 'Position', [100, 100, 800, 600]);
    
    % 添加菜单按钮
    btnLoad = uibutton(fig, 'push', 'Text', '选择鸟类图像', 'Position', [50, 500, 200, 30], ...
        'ButtonPushedFcn', @(btn, event) loadImage(fig));
    
    btnHistogram = uibutton(fig, 'push', 'Text', '直方图增强', 'Position', [50, 450, 200, 30], ...
        'ButtonPushedFcn', @(btn, event) applyHistogramEqualization(fig));
    
    btnMedianFilter = uibutton(fig, 'push', 'Text', '中值滤波', 'Position', [50, 400, 200, 30], ...
        'ButtonPushedFcn', @(btn, event) applyMedianFilter(fig));
    
    btnGrayScale = uibutton(fig, 'push', 'Text', '灰度处理', 'Position', [50, 350, 200, 30], ...
        'ButtonPushedFcn', @(btn, event) convertToGrayscale(fig));
    
    btnSegmentation = uibutton(fig, 'push', 'Text', '分割图像', 'Position', [50, 300, 200, 30], ...
        'ButtonPushedFcn', @(btn, event) applyImageSegmentation(fig));
    
    btnIdentifyBird = uibutton(fig, 'push', 'Text', '识别鸟类', 'Position', [50, 250, 200, 30], ...
        'ButtonPushedFcn', @(btn, event) identifyBirdSpecies(fig));
    
    % 显示区域
    axOriginal = uiaxes(fig, 'Position', [300, 300, 400, 250]);
    axProcessed = uiaxes(fig, 'Position', [300, 50, 400, 250]);
    
    % 全局变量存储图像和模型
    global originalImage processedImage model;
    originalImage = [];
    processedImage = [];
    
    % 加载预训练的VGG19模型
    model = loadVGG19Model();
end

% 加载预训练的VGG19模型
function model = loadVGG19Model
    disp('正在加载VGG19模型...');
    model = vgg19(); % 加载VGG19预训练模型
    disp('模型加载完成!');
end

% 加载鸟类图像
function loadImage(fig)
    global originalImage axOriginal;
    [file, path] = uigetfile({'*.jpg;*.png;*.tif', '图像文件 (*.jpg, *.png, *.tif)'});
    if isequal(file, 0)
        return;
    end
    filePath = fullfile(path, file);
    originalImage = imread(filePath);
    imshow(originalImage, 'Parent', axOriginal);
    title(axOriginal, '原始鸟类图像');
end

% 直方图均衡化
function applyHistogramEqualization(fig)
    global originalImage processedImage axProcessed;
    if isempty(originalImage)
        uialert(fig, '请先加载鸟类图像!', '错误');
        return;
    end
    
    grayImage = rgb2gray(originalImage);
    equalizedImage = histeq(grayImage);
    processedImage = equalizedImage;
    imshow(processedImage, 'Parent', axProcessed);
    title(axProcessed, '直方图均衡化后的图像');
end

% 中值滤波
function applyMedianFilter(fig)
    global originalImage processedImage axProcessed;
    if isempty(originalImage)
        uialert(fig, '请先加载鸟类图像!', '错误');
        return;
    end
    
    filteredImage = medfilt2(rgb2gray(originalImage), [3 3]);
    processedImage = filteredImage;
    imshow(processedImage, 'Parent', axProcessed);
    title(axProcessed, '中值滤波后的图像');
end

% 灰度处理
function convertToGrayscale(fig)
    global originalImage processedImage axProcessed;
    if isempty(originalImage)
        uialert(fig, '请先加载鸟类图像!', '错误');
        return;
    end
    
    grayImage = rgb2gray(originalImage);
    processedImage = grayImage;
    imshow(processedImage, 'Parent', axProcessed);
    title(axProcessed, '灰度处理后的图像');
end

% 图像分割
function applyImageSegmentation(fig)
    global originalImage processedImage axProcessed;
    if isempty(originalImage)
        uialert(fig, '请先加载鸟类图像!', '错误');
        return;
    end
    
    grayImage = rgb2gray(originalImage);
    threshold = graythresh(grayImage); % 自动计算阈值
    binaryImage = imbinarize(grayImage, threshold);
    processedImage = binaryImage;
    imshow(processedImage, 'Parent', axProcessed);
    title(axProcessed, '图像分割后的结果');
end

% 识别鸟类物种
function identifyBirdSpecies(fig)
    global processedImage model axProcessed;
    if isempty(processedImage)
        uialert(fig, '请先进行图像预处理!', '错误');
        return;
    end
    
    % 调整图像大小以适应模型输入
    inputSize = [224, 224];
    resizedImage = imresize(processedImage, inputSize);
    inputImage = single(resizedImage) / 255; % 归一化
    inputImage = repmat(inputImage, [1, 1, 3]); % 转换为RGB图像
    
    % 使用VGG19进行分类
    label = classify(model, inputImage);
    
    % 显示分类结果
    resultText = sprintf('识别结果: %s', char(label));
    title(axProcessed, resultText);
    disp(resultText);
end

功能说明

  1. 加载鸟类图像

    • 用户可以通过“选择鸟类图像”按钮选择一幅鸟类图像。
    • 图像会显示在左侧的axOriginal轴上。
  2. 直方图均衡化

    • 增强图像对比度,使暗部和亮部的细节更加清晰。
  3. 中值滤波

    • 去除图像中的椒盐噪声,同时保留鸟类轮廓的细节。
  4. 灰度处理

    • 将彩色图像转换为单通道灰度图像,简化图像信息,降低计算复杂度。
  5. 图像分割

    • 将鸟类从背景中分离出来,使得特征提取和分类更加准确。
  6. 识别鸟类物种

    • 使用VGG19模型对预处理后的图像进行分类。
    • 分类结果会在axProcessed轴的标题中显示,并打印到命令窗口。

注意事项

  1. VGG19模型

    • 确保安装了Matlab的Deep Learning Toolbox。
    • 如果未内置VGG19模型,需要从Matlab官方资源下载或使用其他预训练模型替换。
  2. 图像格式

    • 支持常见的图像格式(如.jpg, .png, .tif)。
  3. 扩展功能

    • 可以进一步扩展系统功能,例如添加更多鸟类信息展示模块、支持批量处理等。

以上代码提供了一个完整的鸟类物种识别与分析系统的GUI框架,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值