基于Matlab交通标志识别检测系统GUI设计

基于Matlab交通标志识别检测系统GUI设计

这款MATLAB交通标志识别检测系统GUI软件基于深度学习技术,专用于交通标志的识别与检测。软件能够识别多种交通标志,如人行横道、禁止通行等。用户可以通过读入交通图片,进行图像提取和分割,以识别和分类交通标志。该软件提供详细注释,用户可以在此基础上进一步设计和优化界面及功能。
主要功能:
深度学习模型:使用深度学习卷积神经网络进行交通标志的识别和检测,提高识别准确率和效率。
交通标志识别:支持识别多种交通标志,如人行横道、禁止通行等,适用于交通监控和智能交通系统。
图像提取与分割:用户可以读入交通图片,对图片进行提取和分割,精确识别标志内容。
功能注释:提供详细的代码注释,便于用户理解和在此基础上进行进一步的界面和功能设计。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述


以下是一个基于 MATLAB 的交通标志识别检测系统的 GUI 示例代码。该系统利用图像处理技术和机器学习(或深度学习)模型实现交通标志的检测与识别,支持图像上传、交通标志区域分割、以及分类结果显示。


主程序代码

function TrafficSignDetectionGUI
    % 创建主窗口
    fig = uifigure('Name', '交通标志识别检测系统', ...
        'Position', [100, 100, 800, 600], 'BackgroundColor', [0.95, 0.95, 0.95]);
    
    % 添加菜单按钮
    btnUpload = uibutton(fig, 'push', 'Text', '上传图像', 'Position', [50, 500, 150, 30], ...
        'ButtonPushedFcn', @(btn, event) uploadImage(fig));
    
    btnDetect = uibutton(fig, 'push', 'Text', '标志检测', 'Position', [220, 500, 150, 30], ...
        'ButtonPushedFcn', @(btn, event) detectSigns(fig));
    
    btnSave = uibutton(fig, 'push', 'Text', '保存结果', 'Position', [390, 500, 150, 30], ...
        'ButtonPushedFcn', @(btn, event) saveResult(fig));
    
    % 显示区域
    axOriginal = uiaxes(fig, 'Position', [50, 100, 350, 300]);
    axProcessed = uiaxes(fig, 'Position', [420, 100, 350, 300]);
    
    % 全局变量存储图像数据
    global originalImage processedImage;
    originalImage = [];
    processedImage = [];
end

% 上传图像
function uploadImage(fig)
    global originalImage axOriginal;
    [file, path] = uigetfile({'*.jpg;*.png;*.bmp', '图像文件 (*.jpg, *.png, *.bmp)'});
    if isequal(file, 0)
        return;
    end
    filePath = fullfile(path, file);
    originalImage = imread(filePath);
    
    % 显示原始图像
    axes(axOriginal);
    imshow(originalImage);
    title('原始图像');
end

% 标志检测与分类
function detectSigns(fig)
    global originalImage processedImage axProcessed;
    if isempty(originalImage)
        uialert(fig, '请先上传图像!', '错误');
        return;
    end
    
    % 转换为HSV颜色空间
    hsvImage = rgb2hsv(originalImage);
    hChannel = hsvImage(:, :, 1); % 色调
    sChannel = hsvImage(:, :, 2); % 饱和度
    vChannel = hsvImage(:, :, 3); % 亮度
    
    % 根据交通标志的颜色范围进行分割(示例:红色标志、蓝色标志)
    redMask = (hChannel >= 0 & hChannel <= 0.1) | (hChannel >= 0.9 & hChannel <= 1) & ...
              (sChannel >= 0.3) & (vChannel >= 0.3);
    blueMask = (hChannel >= 0.5 & hChannel <= 0.7) & (sChannel >= 0.3) & (vChannel >= 0.3);
    signMask = redMask | blueMask;
    
    % 形态学操作去除噪声
    signMask = imopen(signMask, strel('disk', 5));
    signMask = imclose(signMask, strel('disk', 5));
    
    % 提取连通区域
    labeledImage = bwlabel(signMask);
    stats = regionprops(labeledImage, 'Area', 'Centroid', 'BoundingBox');
    
    % 分类逻辑(假设红色为“停止”,蓝色为“指示”)
    processedImage = originalImage;
    for i = 1:length(stats)
        bbox = stats(i).BoundingBox;
        centroid = stats(i).Centroid;
        
        % 判断标志颜色
        roiHue = hChannel(round(centroid(2)), round(centroid(1)));
        if (roiHue >= 0 && roiHue <= 0.1) || (roiHue >= 0.9 && roiHue <= 1)
            label = 'Stop';
            color = [1, 0, 0]; % 红色框
        elseif roiHue >= 0.5 && roiHue <= 0.7
            label = 'Info';
            color = [0, 0, 1]; % 蓝色框
        else
            continue;
        end
        
        % 绘制边界框和标签
        rectangle('Position', bbox, 'EdgeColor', color, 'LineWidth', 2, ...
                  'Parent', axProcessed);
        text(centroid(1), centroid(2), label, 'Color', color, 'FontSize', 12, ...
             'Parent', axProcessed);
    end
    
    % 显示分类结果
    axes(axProcessed);
    imshow(processedImage);
    title('交通标志检测与分类结果');
end

% 保存结果
function saveResult(fig)
    global processedImage;
    if isempty(processedImage)
        uialert(fig, '没有可保存的结果!', '错误');
        return;
    end
    [file, path] = uiputfile({'*.jpg', 'JPEG 文件 (*.jpg)'; '*.png', 'PNG 文件 (*.png)'});
    if isequal(file, 0)
        return;
    end
    filePath = fullfile(path, file);
    imwrite(processedImage, filePath);
    disp('结果已保存');
end

功能说明

  1. 上传图像

    • 用户可以通过按钮选择本地图像文件(支持 .jpg, .png, .bmp 格式)。
    • 原始图像会显示在左侧的坐标轴中。
  2. 标志检测与分类

    • 图像被转换到 HSV 颜色空间,利用交通标志的颜色特征(色调、饱和度、亮度范围)进行分割。
    • 使用形态学操作(开运算和闭运算)去除噪声并优化分割结果。
    • 根据分割结果提取连通区域,并根据颜色等特征对交通标志进行简单分类(例如红色标志为“停止”,蓝色标志为“指示”)。
    • 在图像中标注分类结果(边界框和标签)。
  3. 保存结果

    • 用户可以将分类结果保存为 JPEG 或 PNG 格式的图像文件。

界面布局

  • 顶部按钮栏

    • 包括“上传图像”、“标志检测”、“保存结果”按钮。
  • 底部显示区

    • 左侧显示原始图像,右侧显示处理后的图像(分割、分类结果)。

注意事项

  1. 颜色范围调整

    • 交通标志的颜色范围(H、S、V 值)可以根据实际应用场景进行调整,以提高分割精度。
  2. 性能优化

    • 对于高分辨率图像,可以考虑对图像进行下采样处理以加快计算速度。
  3. 功能扩展

    • 可以进一步扩展功能,例如添加更多交通标志种类的分类。
    • 可以集成深度学习模型(如 CNN)以实现更复杂的交通标志识别。
  4. 界面美化

    • 当前采用灰色背景,用户可以根据需求调整颜色和布局。

以上代码提供了一个完整的交通标志识别检测系统的 GUI 框架,用户可以根据需求进行修改和优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值