基于Matlab交通标志识别检测系统GUI设计
这款MATLAB交通标志识别检测系统GUI软件基于深度学习技术,专用于交通标志的识别与检测。软件能够识别多种交通标志,如人行横道、禁止通行等。用户可以通过读入交通图片,进行图像提取和分割,以识别和分类交通标志。该软件提供详细注释,用户可以在此基础上进一步设计和优化界面及功能。
主要功能:
深度学习模型:使用深度学习卷积神经网络进行交通标志的识别和检测,提高识别准确率和效率。
交通标志识别:支持识别多种交通标志,如人行横道、禁止通行等,适用于交通监控和智能交通系统。
图像提取与分割:用户可以读入交通图片,对图片进行提取和分割,精确识别标志内容。
功能注释:提供详细的代码注释,便于用户理解和在此基础上进行进一步的界面和功能设计。
以下是一个基于 MATLAB 的交通标志识别检测系统的 GUI 示例代码。该系统利用图像处理技术和机器学习(或深度学习)模型实现交通标志的检测与识别,支持图像上传、交通标志区域分割、以及分类结果显示。
主程序代码
function TrafficSignDetectionGUI
% 创建主窗口
fig = uifigure('Name', '交通标志识别检测系统', ...
'Position', [100, 100, 800, 600], 'BackgroundColor', [0.95, 0.95, 0.95]);
% 添加菜单按钮
btnUpload = uibutton(fig, 'push', 'Text', '上传图像', 'Position', [50, 500, 150, 30], ...
'ButtonPushedFcn', @(btn, event) uploadImage(fig));
btnDetect = uibutton(fig, 'push', 'Text', '标志检测', 'Position', [220, 500, 150, 30], ...
'ButtonPushedFcn', @(btn, event) detectSigns(fig));
btnSave = uibutton(fig, 'push', 'Text', '保存结果', 'Position', [390, 500, 150, 30], ...
'ButtonPushedFcn', @(btn, event) saveResult(fig));
% 显示区域
axOriginal = uiaxes(fig, 'Position', [50, 100, 350, 300]);
axProcessed = uiaxes(fig, 'Position', [420, 100, 350, 300]);
% 全局变量存储图像数据
global originalImage processedImage;
originalImage = [];
processedImage = [];
end
% 上传图像
function uploadImage(fig)
global originalImage axOriginal;
[file, path] = uigetfile({'*.jpg;*.png;*.bmp', '图像文件 (*.jpg, *.png, *.bmp)'});
if isequal(file, 0)
return;
end
filePath = fullfile(path, file);
originalImage = imread(filePath);
% 显示原始图像
axes(axOriginal);
imshow(originalImage);
title('原始图像');
end
% 标志检测与分类
function detectSigns(fig)
global originalImage processedImage axProcessed;
if isempty(originalImage)
uialert(fig, '请先上传图像!', '错误');
return;
end
% 转换为HSV颜色空间
hsvImage = rgb2hsv(originalImage);
hChannel = hsvImage(:, :, 1); % 色调
sChannel = hsvImage(:, :, 2); % 饱和度
vChannel = hsvImage(:, :, 3); % 亮度
% 根据交通标志的颜色范围进行分割(示例:红色标志、蓝色标志)
redMask = (hChannel >= 0 & hChannel <= 0.1) | (hChannel >= 0.9 & hChannel <= 1) & ...
(sChannel >= 0.3) & (vChannel >= 0.3);
blueMask = (hChannel >= 0.5 & hChannel <= 0.7) & (sChannel >= 0.3) & (vChannel >= 0.3);
signMask = redMask | blueMask;
% 形态学操作去除噪声
signMask = imopen(signMask, strel('disk', 5));
signMask = imclose(signMask, strel('disk', 5));
% 提取连通区域
labeledImage = bwlabel(signMask);
stats = regionprops(labeledImage, 'Area', 'Centroid', 'BoundingBox');
% 分类逻辑(假设红色为“停止”,蓝色为“指示”)
processedImage = originalImage;
for i = 1:length(stats)
bbox = stats(i).BoundingBox;
centroid = stats(i).Centroid;
% 判断标志颜色
roiHue = hChannel(round(centroid(2)), round(centroid(1)));
if (roiHue >= 0 && roiHue <= 0.1) || (roiHue >= 0.9 && roiHue <= 1)
label = 'Stop';
color = [1, 0, 0]; % 红色框
elseif roiHue >= 0.5 && roiHue <= 0.7
label = 'Info';
color = [0, 0, 1]; % 蓝色框
else
continue;
end
% 绘制边界框和标签
rectangle('Position', bbox, 'EdgeColor', color, 'LineWidth', 2, ...
'Parent', axProcessed);
text(centroid(1), centroid(2), label, 'Color', color, 'FontSize', 12, ...
'Parent', axProcessed);
end
% 显示分类结果
axes(axProcessed);
imshow(processedImage);
title('交通标志检测与分类结果');
end
% 保存结果
function saveResult(fig)
global processedImage;
if isempty(processedImage)
uialert(fig, '没有可保存的结果!', '错误');
return;
end
[file, path] = uiputfile({'*.jpg', 'JPEG 文件 (*.jpg)'; '*.png', 'PNG 文件 (*.png)'});
if isequal(file, 0)
return;
end
filePath = fullfile(path, file);
imwrite(processedImage, filePath);
disp('结果已保存');
end
功能说明
-
上传图像:
- 用户可以通过按钮选择本地图像文件(支持
.jpg
,.png
,.bmp
格式)。 - 原始图像会显示在左侧的坐标轴中。
- 用户可以通过按钮选择本地图像文件(支持
-
标志检测与分类:
- 图像被转换到 HSV 颜色空间,利用交通标志的颜色特征(色调、饱和度、亮度范围)进行分割。
- 使用形态学操作(开运算和闭运算)去除噪声并优化分割结果。
- 根据分割结果提取连通区域,并根据颜色等特征对交通标志进行简单分类(例如红色标志为“停止”,蓝色标志为“指示”)。
- 在图像中标注分类结果(边界框和标签)。
-
保存结果:
- 用户可以将分类结果保存为 JPEG 或 PNG 格式的图像文件。
界面布局
-
顶部按钮栏:
- 包括“上传图像”、“标志检测”、“保存结果”按钮。
-
底部显示区:
- 左侧显示原始图像,右侧显示处理后的图像(分割、分类结果)。
注意事项
-
颜色范围调整:
- 交通标志的颜色范围(H、S、V 值)可以根据实际应用场景进行调整,以提高分割精度。
-
性能优化:
- 对于高分辨率图像,可以考虑对图像进行下采样处理以加快计算速度。
-
功能扩展:
- 可以进一步扩展功能,例如添加更多交通标志种类的分类。
- 可以集成深度学习模型(如 CNN)以实现更复杂的交通标志识别。
-
界面美化:
- 当前采用灰色背景,用户可以根据需求调整颜色和布局。
以上代码提供了一个完整的交通标志识别检测系统的 GUI 框架,用户可以根据需求进行修改和优化。