基于Matlab多算法药材增强识别检测系统GUI

基于Matlab多算法药材增强识别检测系统GUI

这是一款结合深度学习技术与传统中医药知识的专业软件,旨在提供中药材的高效识别与分析。系统基于VGG-19卷积神经网络模型进行训练,具备高准确率和快速响应能力,能够识别20种常见中药材,如人参、黄芪、枸杞等。该软件不仅支持药材的自动识别,还提供详细的药效信息、保存方式及使用指导,为研究者和中医从业者提供了强有力的工具。

主要功能:
该系统的核心功能是中药材的识别与分析。通过高精度的深度学习算法,用户可以上传药材图像,系统将自动识别药材类型并提供相应的药材简介,详细介绍其药效、功能及使用注意事项等信息。除了基本的识别功能,系统还提供多种图像处理功能,帮助用户优化药材图像。直方图增强功能能够改善图像对比度,使细节更为清晰;形态学腐蚀用于去除图像中的噪声,突出目标区域;边缘检测可更好地观察药材的轮廓与形状;二值化处理则可以将图像转化为黑白形式,便于后续的分析与识别。这些功能的结合使得该系统不仅能够进行药材的快速识别,还能够提升图像质量,提供更准确的分析结果。

通过这种多样化的功能设置,用户可以充分利用该系统进行中草药材的全面分析,从而在相关研究与应用中获取更为精准的信息。
自定义图像上传:选择上传任意中药材图像,系统将实时进行识别并返回结果。
药效与功能分析:

药效详细信息:系统提供每种药材的药效描述,包括其主要用途、调理身体的效果,以及适应症等,有助于全面了解药材的价值。

直方图均衡化:通过对图像进行直方图均衡化,提高图像对比度,使药材的特征更加清晰,辅助后续的识别过程。
形态学腐蚀:应用形态学处理手段去除小噪声,突出主要特征,提高识别准确性。
边缘检测(Canny算法):通过Canny边缘检测算法提取药材的边缘特征,强调药材的轮廓,便于后续分析。
二值化处理:将图像转换为二值图像,简化处理过程,突出关键特征,帮助快速分类和判断。
用户友好的操作界面:

简洁直观的GUI设计:系统界面设计简约、易于操作,支持用户快速上传图像、查看结果和进行各种处理操作。

在这里插入图片描述
在这里插入图片描述


以下是基于Matlab的多算法药材增强识别检测系统的GUI设计及代码实现。此系统旨在通过多种图像处理算法(如直方图均衡化、边缘检测、形态学操作等)对药材图像进行增强,并结合分类模型实现药材种类的识别。


功能概述

  1. 图像加载:用户可以选择本地图片。
  2. 图像增强
    • 直方图均衡化
    • 边缘检测
    • 形态学操作
  3. 特征提取:提取颜色、纹理、形状等特征。
  4. 分类识别:使用机器学习模型(如SVM或CNN)进行药材种类分类。
  5. 结果显示:在GUI中显示增强后的图像和识别结果。

GUI界面设计

使用Matlab的GUIDE工具创建图形用户界面,包含以下组件:

  1. 按钮
    • 加载图片
    • 图像增强
    • 开始识别
    • 退出程序
  2. 下拉菜单:选择增强算法(直方图均衡化、边缘检测、形态学操作)。
  3. 图像显示区域
    • 原始图片
    • 增强后的图片
  4. 文本框
    • 显示识别结果

在这里插入图片描述

代码实现

1. GUI界面初始化
function varargout = HerbalMedicineRecognition(varargin)
% HERBALMEDICINERECOGNITION MATLAB code for HerbalMedicineRecognition.fig
%      HERBALMEDICINERECOGNITION, by itself, creates a new HERBALMEDICINERECOGNITION or raises the existing
%      singleton*.
%
%      H = HERBALMEDICINERECOGNITION returns the handle to a new HERBALMEDICINERECOGNITION or the handle to
%      the existing singleton*.
%
%      HERBALMEDICINERECOGNITION('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in HERBALMEDICINERECOGNITION.M with the given input arguments.
%
%      HERBALMEDICINERECOGNITION('Property','Value',...) creates a new HERBALMEDICINERECOGNITION or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before HerbalMedicineRecognition_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to HerbalMedicineRecognition_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help HerbalMedicineRecognition

% Last Modified by GUIDE v2.5 20-Mar-2025 14:25:36

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @HerbalMedicineRecognition_OpeningFcn, ...
                   'gui_OutputFcn',  @HerbalMedicineRecognition_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

2. 回调函数
function HerbalMedicineRecognition_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to HerbalMedicineRecognition (see VARARGIN)

% Choose default command line output for HerbalMedicineRecognition
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UI Initialization
set(handles.axes1, 'Visible', 'off'); % Original Image
set(handles.axes2, 'Visible', 'off'); % Enhanced Image
set(handles.textResult, 'String', '识别结果将显示在这里');

3. 图片加载功能
function loadImage_Callback(hObject, eventdata, handles)
% hObject    handle to loadImage (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

[filename, pathname] = uigetfile({'*.jpg;*.png;*.bmp', 'Image Files (*.jpg, *.png, *.bmp)'}, '选择图片');
if isequal(filename, 0)
    return;
end

fullpath = fullfile(pathname, filename);
img = imread(fullpath);

% Display original image
axes(handles.axes1);
imshow(img);
title('原始图片');
set(handles.axes1, 'Visible', 'on');

% Store image in handles
handles.img = img;
guidata(hObject, handles);

4. 图像增强功能
function enhanceImage_Callback(hObject, eventdata, handles)
% hObject    handle to enhanceImage (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

if ~isfield(handles, 'img')
    errordlg('请先加载图片!', '错误');
    return;
end

img = handles.img;

% Get selected enhancement algorithm
algorithm = get(handles.algorithmMenu, 'Value');
switch algorithm
    case 1 % Histogram Equalization
        enhancedImg = histeq(rgb2gray(img));
    case 2 % Edge Detection
        enhancedImg = edge(rgb2gray(img), 'Canny');
    case 3 % Morphological Operations
        se = strel('disk', 5);
        enhancedImg = imopen(rgb2gray(img), se);
end

% Display enhanced image
axes(handles.axes2);
imshow(enhancedImg);
title('增强后的图片');
set(handles.axes2, 'Visible', 'on');

% Store enhanced image in handles
handles.enhancedImg = enhancedImg;
guidata(hObject, handles);

5. 药材识别功能
function recognizeHerb_Callback(hObject, eventdata, handles)
% hObject    handle to recognizeHerb (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

if ~isfield(handles, 'enhancedImg')
    errordlg('请先增强图片!', '错误');
    return;
end

enhancedImg = handles.enhancedImg;

% Feature extraction (example: GLCM + Hu Moments)
glcm = graycomatrix(enhancedImg);
stats = regionprops(enhancedImg, 'Area', 'BoundingBox', 'Centroid', 'HuMoments');
features = [glcm(:); stats.HuMoments]; % Combine features

% Load trained model (assume it's an SVM model)
load('herb_model.mat', 'model'); % Replace with your actual model file
predictedLabel = predict(model, features);

% Show result
set(handles.textResult, 'String', sprintf('识别结果: %s', predictedLabel));

6. 退出功能
function exitButton_Callback(hObject, eventdata, handles)
% hObject    handle to exitButton (见 GCBO)
% eventdata  保留 - 在未来版本的MATLAB中定义 (见 VARARGIN)
% handles    包含句柄和用户数据的结构体 (见 GUIDATA)

close(gcf);

训练模型

  1. 准备数据集(包含不同药材种类的图片)。
  2. 提取特征(如GLCM、Hu矩、局部二值模式等)。
  3. 使用Matlab的fitcsvm函数训练支持向量机(SVM)模型,并保存为.mat文件。
% Example: Training an SVM model
features = ...; % Feature matrix
labels = ...;   % Labels (herb types)
model = fitcsvm(features, labels);
save('herb_model.mat', 'model');

总结

上述代码实现了基于Matlab的多算法药材增强识别检测系统,包括GUI设计、图像增强、特征提取和分类识别。用户可以加载图片并获得药材种类的预测结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值