基于YOLOv8深度学习焊缝质量检测系统
内含1300张焊缝缺陷数据集
包括[‘Bad Welding’, ‘Crack’, ‘Excess Reinforcement’, ‘Good Welding’, ‘Porosity’, ‘Spatters’],6类
以下是一个概述和示例代码,帮助你了解如何使用YOLO模型进行焊缝缺陷的检测。
项目概述
本项目旨在开发一个基于深度学习的焊缝质量检测系统,能够识别并分类不同类型的焊缝缺陷,如裂纹、气孔、未熔合等。
步骤
1. 数据准备
首先需要收集焊缝图像数据集,并对每张图像中的缺陷进行标注(边界框及类别标签)。可以考虑公开的数据集或者自行采集和标注。
2. 环境配置
安装必要的依赖项。这里以YOLOv5为例。
pip install torch torchvision torchaudio
git clone https://github.com/ultralytics/yolov5 # 克隆YOLOv5仓库
cd yolov5
pip install -r requirements.txt # 安装依赖
3. 数据预处理
创建一个YAML文件来描述你的数据集路径和类别信息。例如data/weld_defects.yaml
:
train: ./data/images/train/
val: ./data/images/val/
nc: 3 # 假设有三种缺陷类型:裂纹、气孔、未熔合
names: ['crack', 'porosity', 'incomplete_fusion']
4. 模型训练
根据你的任务调整YOLOv5的配置,并开始训练。
# 使用YOLOv5s作为基础模型
python train.py --img 640 --batch 16 --epochs 100 --data weld_defects.yaml --weights yolov5s.pt --cache
这行命令将启动训练流程,其中--img
指定了输入图片尺寸,--batch
是批量大小,--epochs
是训练轮数,--data
指向你的数据配置文件,--weights
指定预训练权重。
5. 模型评估
训练完成后,可以使用以下命令对模型进行评估:
python val.py --weights runs/train/exp/weights/best.pt --data weld_defects.yaml --img 640
6. 部署
使用训练好的模型进行推理。
from models.experimental import attempt_load
from utils.general import non_max_suppression, scale_coords
from utils.torch_utils import select_device
# 加载模型
device = select_device('')
model = attempt_load('runs/train/exp/weights/best.pt', map_location=device)
model.eval()
# 假设image为你的输入图像
# 推理逻辑...
注意事项
- 上述代码片段是为了说明目的而简化了的示例。实际应用中可能需要根据具体情况调整。
- 尽管我们基于YOLOv5进行了示例,但当你真正使用YOLOv8时,请参考其官方文档进行相应的调整。
- 对于特定的应用场景,可能还需要对模型进行微调,以提高识别精度。
- 训练过程可能需要较大的计算资源,建议在具备GPU支持的环境中运行上述代码。