交通物流供应链等领域运筹优化模型建立
交通物流,运筹优化,车辆路径,车辆调度,生产调度,设施选址,布局等其他优化问题
强化学习算法,启发式算法,精确式算法,元启发式算法,运筹算法指导,优化模型求解 cplex gurobi , Matlab , python
基于 运筹优化 的交通物流供应链模型示例代码,使用 MATLAB 实现。该代码适用于解决物流供应链中的路径优化、库存管理、运输调度等问题。
程序说明
-
问题背景:
- 在交通物流供应链中,目标是优化货物的运输路径、降低运输成本、减少库存积压。
- 本示例以 车辆路径问题(VRP, Vehicle Routing Problem) 为核心,结合库存管理和运输调度。
-
优化模型:
- 使用混合整数线性规划(MILP)建模。
- 目标是最小化总运输成本,同时满足客户需求和车辆容量限制。
-
MATLAB 实现:
- 使用 MATLAB 的
intlinprog
求解 MILP 问题。 - 用户可以根据需求扩展模型,例如加入时间窗约束或动态需求。
- 使用 MATLAB 的
MATLAB 代码
% 交通物流供应链优化:车辆路径问题(VRP)
clc;
clear;
%% 参数定义
numNodes = 6; % 节点数量(包括仓库)
demand = [0, 4, 5, 3, 6, 4]; % 各节点的需求量(仓库需求为0)
capacity = 10; % 每辆车的最大容量
distanceMatrix = [0, 8, 9, 14, 12, 10; ...
8, 0, 6, 7, 9, 8; ...
9, 6, 0, 5, 6, 7; ...
14, 7, 5, 0, 4, 5; ...
12, 9, 6, 4, 0, 3; ...
10, 8, 7, 5, 3, 0]; % 距离矩阵
numVehicles = 3; % 车辆数量
depot = 1; % 仓库节点编号
%% 决策变量
numVars = numNodes^2 + numNodes; % x(i,j) 和 y(i)
x = optimvar('x', numNodes, numNodes, 'Type', 'integer', 'LowerBound', 0, 'UpperBound', 1); % 是否从i到j
y = optimvar('y', numNodes, 'Type', 'continuous', 'LowerBound', 0); % 到达节点i时的累计载货量
%% 目标函数
obj = sum(sum(distanceMatrix .* x)); % 总运输距离最小化
%% 约束条件
prob = optimproblem('ObjectiveSense', 'minimize');
% 目标函数
prob.Objective = obj;
% 每个客户节点只能被访问一次
for j = 2:numNodes
prob.Constraints.("visit_once_" + j) = sum(x(:, j)) == 1;
end
% 每辆车必须从仓库出发并返回仓库
for i = 2:numNodes
prob.Constraints.("vehicle_flow_" + i) = sum(x(i, :)) == sum(x(:, i));
end
prob.Constraints.depot_out = sum(x(depot, :)) <= numVehicles;
prob.Constraints.depot_in = sum(x(:, depot)) <= numVehicles;
% 车辆容量约束
for i = 2:numNodes
for j = 2:numNodes
prob.Constraints.("capacity_" + i + "_" + j) = y(j) >= y(i) + demand(j) - capacity * (1 - x(i, j));
end
end
for i = 2:numNodes
prob.Constraints.("capacity_bound_" + i) = y(i) >= demand(i);
prob.Constraints.("capacity_limit_" + i) = y(i) <= capacity;
end
% 防止子环路
u = optimvar('u', numNodes, 'Type', 'continuous', 'LowerBound', 1, 'UpperBound', numNodes-1);
for i = 2:numNodes
for j = 2:numNodes
if i ~= j
prob.Constraints.("subtour_" + i + "_" + j) = u(i) - u(j) + (numNodes-1)*x(i, j) <= numNodes-2;
end
end
end
%% 求解优化问题
options = optimoptions('intlinprog', 'Display', 'iter');
[sol, fval, exitflag] = solve(prob, 'Options', options);
%% 输出结果
if exitflag > 0
disp('优化成功!');
disp('最优路径分配矩阵 x:');
disp(sol.x);
disp('到达各节点时的累计载货量 y:');
disp(sol.y);
disp('最小运输成本:');
disp(fval);
else
disp('优化失败,请检查模型设置!');
end
%% 绘图
figure;
G = digraph(sol.x);
plot(G, 'EdgeLabel', G.Edges.Weight, 'Layout', 'force');
title('最优路径分配');
—
代码说明
-
决策变量:
x(i,j)
:表示是否从节点i
到节点j
。y(i)
:表示到达节点i
时的累计载货量。
-
目标函数:
- 最小化总运输距离。
-
约束条件:
- 每个客户节点只能被访问一次。
- 每辆车必须从仓库出发并返回仓库。
- 车辆容量限制。
- 防止子环路(Subtour Elimination Constraints)。
-
求解器:
- 使用
intlinprog
求解混合整数线性规划问题。
- 使用
示例输出
运行代码后,将显示如下内容:
- 最优路径分配矩阵
x
。 - 到达各节点时的累计载货量
y
。 - 最小运输成本。
- 最优路径的可视化图。
扩展应用
- 时间窗约束:
- 可以为每个节点添加时间窗约束,确保货物在规定时间内送达。
- 多仓库问题:
- 支持多个仓库的场景,扩展模型以处理复杂的供应链网络。
- 动态需求:
- 结合预测模型,实时更新客户需求。