物理定律结合神经网络!收敛速度提升4个数量级!

目前,物理信息神经网络(PINN)成为解决复杂科学与工程问题的关键技术。将物理定律融入神经网络训练,能在数据驱动的模型中引入先验知识,挖掘数据背后的物理规律。 

借助这种物理信息融合的建模机制,相关模型能够充分利用物理原理的约束,克服传统数据驱动模型的局限性,提升复杂系统和任务的建模与求解能力。

我整理了10篇关于【物理信息神经网络】的相关论文,可以di~


混合量子物理信息神经网络:迈向高速流动的高效学习

文章解析:

文章提出混合量子物理信息神经网络(HQPINN)用于模拟高速流动。通过将参数化量子电路与经典神经网络并行结合,以求解高超声速流动中的偏微分方程。研究对比了经典PINN、量子神经网络和HQPINN的性能,分析其在不同流动问题中的表现。


创新点:

1.构建了一种新型的混合量子物理信息神经网络(HQPINN),结合量子和经典神经网络的优势,为高速流动建模提供新途径。

2.在HQPINN中引入量子电路,利用量子特性提高模型的训练能力和对复杂模式的捕捉能力,提升模型的表达效率。

3.通过并行结构,实现量子层和经典层的优势互补,使模型能更好地处理不同特性的流动问题,增强模型的适应性。

研究方法:

1.以二维无粘可压缩流的Euler方程为控制方程,结合PINN和量子机器学习的方法构建HQPINN模型。

2.设计对比实验,分别以具有光滑解和不连续解的1D Euler方程以及2D跨音速翼型流动问题为测试案例,对比不同模型的训练能力和精度。

3.采用均方误差损失函数和Adam优化器进行模型训练,在不同模型中设置不同数量的隐藏层、节点和量子层,观察模型性能变化。

研究结论:

1.在具有谐波解的问题上,HQPINN展现出卓越的准确性和可训练性,优于经典和量子模型,且参数成本较低。

2.对于非谐波解的问题,经典模型表现最佳,混合模型能纠正量子模型的振荡问题,但训练损失方差大,复杂问题下可训练性低。

3.HQPINN在谐波解问题上优势明显,但在含激波和不连续解的复杂问题上存在局限,未来可通过调整网络结构和利用量子硬件改进 。 


全局物理信息神经网络(GPINNs):从局部逐点约束到全局节点关联

文章解析:

文章提出全局物理信息神经网络(GPINNs),通过分析PINNs精度不足的原因,引入全局节点关联概念。GPINNs利用预训练PINNs的先验信息估计节点关联权重,在理论和实践中展现出二阶收敛能力,为求解PDEs提供更优方案。


创新点:

1.创新地将损失函数从局部逐点约束转变为全局节点相关网络约束,确保解的唯一性和高精度。

2.引入节点网络表示学习,结合随机节点网络和神经网络,有效避免传统数值方法的网格依赖性问题。

3.融合经典数值方法和基于DNN的PDE求解器,在复杂边界和分段均匀介质问题上表现出色。 

研究方法:

1.构建基于保守节点网络的GPINNs模型,以Delaunay三角剖分生成节点网络,采用重心对偶网络辅助。

2.用预训练的神经网络预测边缘特征矩阵,构建通量守恒损失函数,通过梯度优化求解PDEs。

3.进行1D和2D的多种PDEs数值实验,对比PINNs、FEM和GPINNs的收敛性、计算精度等。

研究结论:

1.GPINNs收敛速度比PINNs快一个数量级,在一维和二维问题上相比传统数值方法精度分别提升3 - 4个和2 - 3个数量级。

2.在处理复杂边界和分段均匀介质问题时,GPINNs相比传统方法和PINNs具有明显优势,能有效避免几何误差和网格依赖性。

3.GPINNs为求解PDEs提供了新的有效途径,但获取有效先验知识仍是提高其精度的关键挑战,有待进一步研究。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值