- 博客(23)
- 收藏
- 关注
原创 嵌入模型(Embedding Models)原理详解:从Word2Vec到BERT的技术演进
嵌入模型(Embedding Models)是机器学习和自然语言处理中的核心技术,通过将离散数据映射到连续的向量空间,捕捉语义和语法信息。本文从原理出发,系统解析经典模型(如Word2Vec、GloVe)与前沿技术(如BERT、Sentence-BERT),并探讨其应用场景与未来挑战。
2025-04-24 15:59:55
1488
原创 大模型评估方法与工程实践指南:从指标设计到全链路优化
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。1.学习路线图要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2025-04-23 19:48:56
1368
原创 什么是LangChain?收藏这篇就够了
LangChain是一个开源的大语言模型应用开发框架,由Harrison Chase于2022年10月发布。其核心思想是通过模块化组件和可组合的链(Chain),将大模型与外部数据源、计算工具等连接,构建端到端的AI应用。如果您的目标是:✅ 构建超越简单问答的复杂AI应用✅ 需要集成外部数据和工具✅ 关注AI应用的可维护性和扩展性那么LangChain将是您的必备工具。正如Linux之父Linus Torvalds所说:"好的程序员关心代码结构,而伟大的程序员关心数据结构和它们之间的关系。
2025-04-22 15:38:39
1391
原创 基于LoRA的Llama 2二次预训练实践:高效低成本的大模型领域适配
Llama 2是Meta于2023年推出的开源大语言模型家族,参数量涵盖7B/13B/70B。优势:更强的上下文理解、更低的推理资源需求、支持商业用途。局限性:通用预训练导致领域知识不足。
2025-04-21 17:54:48
1328
原创 [特殊字符] Agent意图识别全攻略!从原理到实战,一文掌握核心技术
是自然语言处理(NLP)的关键任务,目标是从用户输入(如文本或语音)中推断其潜在目的。例如:用户问:“明天北京天气如何?
2025-04-20 16:48:43
1806
原创 8种主流Agent框架解析:从理论到实践的技术选型指南
在人工智能领域,作为能够自主感知、决策和执行的实体,已成为推动复杂任务自动化的核心技术。随着大模型和工具链的快速发展,各类Agent框架层出不穷。本文将深入解析8种主流Agent框架的设计理念、技术特点及适用场景,并提供选型建议,助你在实际项目中做出最优决策。
2025-04-18 16:47:57
1321
原创 一文读懂大模型上下文协议(MCP):突破长文本处理的关键技术
MCP不仅解决了大模型的“金鱼记忆”问题,更为复杂任务处理打开了新可能。随着自适应上下文窗口与多模态MCP等技术的发展,未来大模型或将真正实现“无限上下文”推理能力。如何学习大模型 AI?由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
2025-04-17 15:35:02
1587
原创 RAG系统的核心痛点与优化方案全解析:从理论到实践的深度指南
随着大模型技术的快速发展,检索增强生成(Retrieval-Augmented Generation, RAG)已成为解决LLM幻觉问题、提升生成准确性的核心技术。然而,RAG系统的开发与优化面临诸多挑战。本文结合Barnett等人的经典研究[1]及行业最新实践,系统性梳理RAG的12大痛点与优化方案,并提供代码示例与评估框架,助力开发者构建高效可靠的RAG系统。
2025-04-16 15:05:16
1295
原创 大模型的三种模式:Agent、Embedding、Copilot
Embedding模式将大模型作为后台组件集成到现有系统中,通过增强功能提升用户体验,而非直接暴露模型能力。集成性:模型以服务或功能模块形式嵌入应用,如智能客服中的聊天机器人。定制化:针对特定场景优化,例如推荐系统根据用户行为生成个性化内容。用户体验优化:通过智能特性提升产品吸引力,如搜索引擎的语义理解增强。Copilot模式强调大模型与用户的实时协作,模型提供建议但决策权仍由人类掌握。实时辅助:如代码补全、文档润色建议。协同创作:用户与模型共同完成任务,例如设计工具中的创意草图生成。隐私保护。
2025-04-15 21:16:55
1607
原创 一文看懂深度学习:核心概念、应用与未来
1. 什么是深度学习?深度学习是机器学习的一个子领域,其核心在于通过多层神经网络结构模拟人脑的抽象学习机制。与传统机器学习不同,深度学习能够从原始数据(如图像像素、文本字符)中自动提取高阶特征,无需依赖人工设计的特征工程。例如,在图像识别任务中,传统方法需手动定义边缘、纹理等特征,而深度学习模型(如CNN)可直接从像素中学习到这些特征。
2025-04-14 19:20:01
1816
原创 Agent的19种框架大比拼:从AutoGPT到MetaGPT,开发者如何选择?
随着大模型技术的爆发,智能体(Agent)框架逐渐成为AI落地的核心工具。无论是自动化任务处理、多智能体协作,还是结合检索增强生成(RAG)的知识密集型应用,不同框架各有千秋。本文将从技术架构、适用场景、开发门槛、社区生态四大维度,全面解析19个主流Agent框架,助你找到最适合的解决方案!
2025-04-12 16:24:19
2166
原创 用Copilot 优化 AI 人工智能项目开发?
Copilot 工具通过代码生成、自动化部署和智能分析,为 AI 开发提供了“加速器”。开发者应结合项目需求,灵活选择工具组合(如 GitHub Copilot 侧重编码,腾讯云 Copilot 侧重部署),并持续探索其高级功能。随着 AI 与编程工具的进一步融合,Copilot 将帮助开发者更专注于算法创新与业务逻辑,释放技术潜能。如何学习大模型 AI?由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
2025-04-11 15:57:15
1075
原创 大模型 - RAG(检索、增强、生成)?收藏这篇就够了。
RAG(Retrieval-Augmented Generation,检索增强生成) 是一种结合了信息检索技术与语言生成模型的人工智能技术。该技术通过从外部知识库中检索相关信息,并将其作为提示(Prompt)输入给大型语言模型(LLMs),以增强模型处理知识密集型任务的能力,如问答、文本摘要、内容生成等。RAG模型由Facebook AI Research(FAIR)团队于2020年首次提出,并迅速成为大模型应用中的热门方案。一、检索增强生成(RAG)什么是RAG?RAG(Retrieval-Augment
2025-04-09 16:57:31
1033
原创 Agent、RAG、LangChain这三者有什么关系?
我还是那句话“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。1、大模型全套的学习路线学习大型人工智能模型,人工智能大模型学习路线图L1~L7所有阶段。
2025-04-07 15:26:35
1385
原创 使用LangGraph构建多Agent系统架构?
Agent是一个使用大语言模型决定应用程序控制流的系统。随着这些系统的开发,它们随时间推移变得复杂,使管理和扩展更困难。Agent拥有太多的工具可供使用,对接下来应该调用哪个工具做出糟糕决策上下文过于复杂,以至于单个Agent无法跟踪系统中需要多个专业领域(例如规划者、研究员、数学专家等)。为解决这些问题,你可能考虑将应用程序拆分成多个更小、独立的代理,并将它们组合成一个多Agent系统。这些独立的Agent可以简单到一个提示和一个LLM调用,或者复杂到像一个ReActAgent(甚至更多!使用。
2025-04-02 15:46:17
948
原创 AutoGen的简介、安装、使用方法之详细攻略
2023年9月30日左右,微软正式开源AutoGen,这是一个框架,允许开发具有多个Agent的LLM应用程序,这些Agent可以相互交流以解决任务。AutoGen是一个框架,通过多个代理进行对话以解决任务,从而实现LLM应用的开发。AutoGen代理是可定制的、可对话的,并且能够无缝地允许人类参与。它们可以在使用LLMs、人类输入和工具的各种模式下运行。>> AutoGen通过多代理对话的方式,以最小的工作量实现构建下一代LLM应用。它简化了复杂LLM工作流的编排、自动化和优化。
2025-04-01 16:58:49
914
原创 AI大语言模型完整的微调策略
GPT-4、LaMDA、PaLM等大型语言模型(LLMs)以其在广泛主题上的深入理解和生成高度类人文本的能力而闻名遐迩,它们在全球范围内引起了广泛关注。这些模型的预训练过程涉及对来自互联网、书籍和其他来源的数十亿词汇的海量数据集进行学习。在这一阶段,模型被赋予了广泛的知识,包括对语言的掌握、对各种主题的理解、推理能力,以及对训练数据中可能存在的偏见的认识。尽管它们拥有令人印象深刻的知识库,但这些预训练的模型在特定领域或任务的专业技能上仍有所欠缺。为了弥补这一不足,微调技术应运而生。
2025-03-31 19:47:01
914
原创 零基础学习AI大模型指南
AI大模型是指由大量参数和复杂网络架构组成的人工智能模型,通常用于处理复杂的任务,例如自然语言处理、图像识别和自动驾驶等。大模型的特点是可以通过大量的数据进行训练,从而具备较强的泛化能力,能更准确地预测或生成结果。
2025-03-28 16:58:35
711
原创 AI大模型LLM:盘点国内八大主流大模型
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
2025-03-27 20:15:11
2036
1
原创 AI大模型知识点大梳理,零基础入门到精通
以自然语言处理为例,大模型能够理解文本的语义、语法、语用等多层面含义,并根据给定的提示或问题生成连贯、合理且富有逻辑性的回答,就如同一个具备深厚语言功底与广泛知识储备的人类学者在进行交流与创作。随着大模型的持续爆火,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
2025-03-27 14:47:25
409
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人