用Python和Gradio实现多模态交互应用
关键词:Python、Gradio、多模态交互应用、图像识别、语音合成、文本处理
摘要:本文深入探讨了如何运用Python和Gradio构建多模态交互应用。多模态交互允许用户通过多种方式(如文本、图像、语音等)与应用进行交互,提供更加自然和丰富的用户体验。我们将从多模态交互的基本概念出发,详细介绍Python和Gradio的相关原理和使用方法,通过具体的算法和代码示例展示如何实现多模态交互应用的核心功能。同时,还会给出实际的项目实战案例,分析不同的应用场景,并推荐相关的工具和资源,最后对多模态交互应用的未来发展趋势与挑战进行总结。
1. 背景介绍
1.1 目的和范围
本文章的主要目的是帮助开发者掌握使用Python和Gradio创建多模态交互应用的技术。我们将涵盖从基础概念到实际项目开发的全过程,包括多模态数据的处理、交互界面的设计以及应用的部署等方面。范围主要集中在利用Python的各种库和Gradio框架实现文本、图像和语音等常见模态的交互功能。
1.2 预期读者
本文适合对多模态交互技术感兴趣的Python开发者、机器学习爱好者以及想要创建交互式应用的相关人员。无论你是初学者还是有一定经验的开发者,都能从本文中获取到有价值的信息。
1.3 文档结构概述
本文将按照以下结构进行组织:首先介绍多模态交互的核心概念和Python、Gradio的相关原理;接着详细讲解实现多模态交互的核心算法和具体操作步骤,并给出相应的Python代码;然后通过数学模型和公式进一步解释算法原理;之后进行项目实战,展示如何开发一个完整的多模态交互应用;再分析多模态交互应用的实际场景;推荐相关的工具和资源;最后总结多模态交互应用的未来发展趋势与挑战,并提供常见问题的解答和扩展阅读资料。
1.4 术语表
1.4.1 核心术语定义
- 多模态交互:指用户可以通过多种不同的输入方式(如文本、图像、语音等)与系统进行交互,系统也能以多种输出方式(如文本、语音、图像等)回应用户。
- Python:一种高级、通用、解释型的编程语言,具有丰富的库和工具,广泛应用于数据分析、机器学习、Web开发等领域。
- Gradio:一个开源的Python库,用于快速创建交互式Web界面,方便用户与机器学习模型进行交互。
- 模态:在多模态交互中,模态指的是不同的信息表现形式,如文本、图像、语音等。
1.4.2 相关概念解释
- 多模态融合:将不同模态的数据进行整合和处理,以获取更全面和准确的信息。例如,在图像识别中结合文本描述来提高识别的准确性。
- 交互界面:用户与系统进行交互的界面,通过该界面用户可以输入信息并获取系统的输出。Gradio可以帮助我们快速创建这样的界面。
1.4.3 缩略词列表
- API:Application Programming Interface,应用程序编程接口,用于不同软件之间进行交互和数据交换。
- ML:Machine Learning,机器学习,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。
2. 核心概念与联系
2.1 多模态交互的基本原理
多模态交互的核心思想是让用户能够以自然、便捷的方式与系统进行交互。不同的模态具有各自的特点和优势,例如文本输入可以精确表达信息,图像输入可以直观展示场景,语音输入则更加自然流畅。系统需要对不同模态的输入进行处理和分析,然后根据需求生成相应的输出。
2.2 Python和Gradio的作用
Python是实现多模态交互应用的核心编程语言,它拥有丰富的库和工具,如OpenCV
用于图像处理,SpeechRecognition
用于语音识别,transformers
用于自然语言处理等。Gradio则是一个用于创建交互式Web界面的工具,它可以将Python代码封装成一个易于使用的界面,方便用户进行交互。
2.3 核心概念的联系
多模态交互需要处理不同模态的数据,Python提供了处理这些数据的能力,而Gradio则为用户提供了一个可视化的交互界面。通过Python的各种库和Gradio的结合,我们可以实现一个完整的多模态交互应用。
2.4 文本示意图
用户输入(文本、图像、语音) -> Python处理(数据预处理、模型推理) -> Gradio界面显示输出(文本、图像、语音)
2.5 Mermaid流程图
3. 核心算法原理 & 具体操作步骤
3.1 文本处理算法原理
在多模态交互中,文本处理是一个重要的环节。常见的文本处理任务包括文本分类、情感分析、问答系统等。这里我们以文本分类为例,介绍其算法原理。
文本分类的基本思想是将输入的文本映射到预定义的类别中。一种常用的方法是使用机器学习模型,如朴素贝叶斯分类器、支持向量机等。在深度学习领域,也可以使用卷积神经网络(CNN)、循环神经网络(RNN)及其变体(如LSTM、GRU)等模型。
下面是一个使用Python和scikit-learn
库实现简单文本分类的示例代码:
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
# 训练数据
train_texts = ["这是一个积极的句子", "这是一个消极的句子"]
train_labels = ["积极", "消极"]
# 创建文本分类管道
text_clf = Pipeline([
('tfidf', TfidfVectorizer()),
('clf', MultinomialNB()),
])
# 训练模型
text_clf.fit(train_texts, train_labels)
# 测试数据
test_text = ["这是一个积极的测试句子"]
predicted = text_clf.predict(test_text)
print(predicted)
3.2 图像处理算法原理
图像处理在多模态交互中也非常重要,常见的图像处理任务包括图像分类、目标检测、图像生成等。这里我们以图像分类为例,介绍其算法原理。
图像分类的目标是将输入的图像分类到预定义的类别中。在深度学习领域,卷积神经网络(CNN)是一种非常有效的图像分类模型。CNN通过卷积层、池化层和全连接层等结构自动提取图像的特征,并进行分类。
下面是一个使用Python和torchvision
库实现简单图像分类的示例代码:
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch import nn
# 数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 加载数据集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
# 定义简单的CNN模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练模型
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
running_loss = 0.0
print('Finished Training')
3.3 语音处理算法原理
语音处理在多模态交互中可以实现语音识别、语音合成等功能。这里我们以语音识别为例,介绍其算法原理。
语音识别的目标是将输入的语音信号转换为文本。常见的语音识别方法包括基于隐马尔可夫模型(HMM)和基于深度学习的方法,如端到端的语音识别模型(如Transformer-based模型)。
下面是一个使用Python和SpeechRecognition
库实现简单语音识别的示例代码:
import speech_recognition as sr
# 创建一个Recognizer对象
r = sr.Recognizer()
# 使用麦克风录制音频
with sr.Microphone() as source:
print("请说话...")
audio = r.listen(source)
try:
# 使用Google Web Speech API进行语音识别
text = r.recognize_google(audio, language='zh-CN')
print(f"你说的是: {text}")
except sr.UnknownValueError:
print("无法识别语音")
except sr.RequestError as e:
print(f"请求错误; {e}")
3.4 具体操作步骤
- 安装必要的库:使用
pip
安装scikit-learn
、torchvision
、SpeechRecognition
、gradio
等库。 - 数据准备:根据具体的任务,准备相应的训练数据和测试数据。
- 模型训练:使用Python代码实现相应的算法,并进行模型训练。
- 创建Gradio界面:使用Gradio库创建交互式界面,将模型集成到界面中。
- 部署应用:将应用部署到服务器上,让用户可以通过Web浏览器访问。
4. 数学模型和公式 & 详细讲解 & 举例说明
4.1 文本处理中的数学模型和公式
4.1.1 TF-IDF(词频 - 逆文档频率)
TF-IDF是一种常用的文本特征提取方法,用于衡量一个词在文档中的重要性。其计算公式如下:
- 词频(TF): T F t , d = 词 t 在文档 d 中出现的次数 文档 d 中的总词数 TF_{t,d}=\frac{词t在文档d中出现的次数}{文档d中的总词数} TFt,d=文档d中的总词数词t在文档d中出现的次数
- 逆文档频率(IDF): I D F t = log 文档总数 包含词 t 的文档数 + 1 IDF_{t}=\log\frac{文档总数}{包含词t的文档数 + 1} IDFt=log包含词t的文档数+1文档总数
- TF-IDF值: T F − I D F t , d = T F t , d × I D F t TF - IDF_{t,d}=TF_{t,d}\times IDF_{t} TF−IDFt,d=TFt,d×IDFt
例如,假设有一个文档集合,其中包含3个文档,文档1中有10个词,“苹果”出现了2次;文档2中有15个词,“苹果”出现了3次;文档3中有20个词,“苹果”出现了1次。那么“苹果”在文档1中的TF值为 2 10 = 0.2 \frac{2}{10}=0.2 102=0.2,包含“苹果”的文档数为3,文档总数为3,则“苹果”的IDF值为 log 3 3 + 1 ≈ − 0.288 \log\frac{3}{3 + 1}\approx -0.288 log3+13≈−0.288,“苹果”在文档1中的TF-IDF值为 0.2 × ( − 0.288 ) = − 0.0576 0.2\times(-0.288)= -0.0576 0.2×(−0.288)=−0.0576。
4.1.2 朴素贝叶斯分类器
朴素贝叶斯分类器基于贝叶斯定理和特征条件独立假设。对于文本分类任务,我们要计算给定文本属于某个类别的概率,然后选择概率最大的类别作为预测结果。贝叶斯定理的公式为:
P ( C ∣ X ) = P ( X ∣ C ) P ( C ) P ( X ) P(C|X)=\frac{P(X|C)P(C)}{P(X)} P(C∣X)=P(X)P(X∣C)P(C)
其中, P ( C ∣ X ) P(C|X) P(C∣X)表示在给定特征 X X X的情况下,属于类别 C C C的概率; P ( X ∣ C ) P(X|C) P(X∣C)表示在类别 C C C下出现特征 X X X的概率; P ( C ) P(C) P(C)表示类别 C C C的先验概率; P ( X ) P(X) P(X)表示特征 X X X的先验概率。
在朴素贝叶斯分类器中,假设特征之间是条件独立的,即:
P ( X ∣ C ) = ∏ i = 1 n P ( x i ∣ C ) P(X|C)=\prod_{i=1}^{n}P(x_i|C) P(X∣C)=∏i=1nP(xi∣C)
其中, x i x_i xi是特征 X X X的第 i i i个分量。
4.2 图像处理中的数学模型和公式
4.2.1 卷积操作
卷积操作是CNN中的核心操作,其数学公式为:
( I ∗ K ) i , j = ∑ m = 0 M − 1 ∑ n = 0 N − 1 I i + m , j + n K m , n (I * K)_{i,j}=\sum_{m=0}^{M - 1}\sum_{n=0}^{N - 1}I_{i + m,j + n}K_{m,n} (I∗K)i,j=∑m=0M−1∑n=0N−1Ii+m,j+nKm,n
其中, I I I是输入图像, K K K是卷积核, M M M和 N N N是卷积核的大小, ( I ∗ K ) i , j (I * K)_{i,j} (I∗K)i,j是卷积结果在位置 ( i , j ) (i,j) (i,j)处的值。
例如,假设有一个3x3的输入图像 I I I和一个2x2的卷积核 K K K:
I = [ 1 2 3 4 5 6 7 8 9 ] I=\begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix} I= 147258369
K = [ 1 2 3 4 ] K=\begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix} K=[1324]
则卷积结果的第一个元素为:
( I ∗ K ) 0 , 0 = 1 × 1 + 2 × 2 + 4 × 3 + 5 × 4 = 37 (I * K)_{0,0}=1\times1 + 2\times2 + 4\times3 + 5\times4 = 37 (I∗K)0,0=1×1+2×2+4×3+5×4=37
4.2.2 池化操作
池化操作用于减少特征图的尺寸,常见的池化操作有最大池化和平均池化。最大池化的公式为:
P i , j = max ( m , n ) ∈ S i , j I m , n P_{i,j}=\max_{(m,n)\in S_{i,j}}I_{m,n} Pi,j=max(m,n)∈Si,jIm,n
其中, P i , j P_{i,j} Pi,j是池化结果在位置 ( i , j ) (i,j) (i,j)处的值, S i , j S_{i,j} Si,j是池化窗口在输入特征图上的位置集合。
4.3 语音处理中的数学模型和公式
4.3.1 隐马尔可夫模型(HMM)
隐马尔可夫模型是一种统计模型,用于描述一个含有隐含未知参数的马尔可夫过程。HMM由三个部分组成:状态转移概率矩阵 A A A、观测概率矩阵 B B B和初始状态概率向量 π \pi π。
状态转移概率矩阵 A A A表示从一个状态转移到另一个状态的概率,其元素 a i j = P ( q t + 1 = j ∣ q t = i ) a_{ij}=P(q_{t + 1}=j|q_t = i) aij=P(qt+1=j∣qt=i),其中 q t q_t qt表示时刻 t t t的状态。
观测概率矩阵 B B B表示在某个状态下观测到某个观测值的概率,其元素 b j ( k ) = P ( o t = k ∣ q t = j ) b_{j}(k)=P(o_t = k|q_t = j) bj(k)=P(ot=k∣qt=j),其中 o t o_t ot表示时刻 t t t的观测值。
初始状态概率向量 π \pi π表示初始时刻处于各个状态的概率,其元素 π i = P ( q 1 = i ) \pi_i = P(q_1 = i) πi=P(q1=i)。
5. 项目实战:代码实际案例和详细解释说明
5.1 开发环境搭建
- 安装Python:从Python官方网站(https://www.python.org/downloads/)下载并安装Python 3.7或以上版本。
- 创建虚拟环境:使用
venv
或conda
创建一个虚拟环境,以隔离项目的依赖。例如,使用venv
创建虚拟环境的命令为:
python -m venv myenv
- 激活虚拟环境:在Windows上,使用以下命令激活虚拟环境:
myenv\Scripts\activate
在Linux或Mac上,使用以下命令激活虚拟环境:
source myenv/bin/activate
- 安装必要的库:使用
pip
安装gradio
、scikit-learn
、torchvision
、SpeechRecognition
等库。例如:
pip install gradio scikit-learn torchvision SpeechRecognition
5.2 源代码详细实现和代码解读
下面我们实现一个简单的多模态交互应用,该应用可以接受文本输入和图像输入,并分别进行文本分类和图像分类。
import gradio as gr
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
import torch
import torchvision
import torchvision.transforms as transforms
from torch import nn
# 文本分类模型
train_texts = ["这是一个积极的句子", "这是一个消极的句子"]
train_labels = ["积极", "消极"]
text_clf = Pipeline([
('tfidf', TfidfVectorizer()),
('clf', MultinomialNB()),
])
text_clf.fit(train_texts, train_labels)
# 图像分类模型
transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
net.load_state_dict(torch.load('cifar10_model.pth')) # 加载预训练模型
# 定义预测函数
def text_prediction(text):
predicted = text_clf.predict([text])
return predicted[0]
def image_prediction(image):
image = transform(image).unsqueeze(0)
with torch.no_grad():
outputs = net(image)
_, predicted = torch.max(outputs.data, 1)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
return classes[predicted.item()]
# 创建Gradio界面
with gr.Blocks() as demo:
gr.Markdown("多模态交互应用")
with gr.Tab("文本分类"):
text_input = gr.Textbox(label="输入文本")
text_output = gr.Textbox(label="预测结果")
text_button = gr.Button("预测")
text_button.click(text_prediction, inputs=text_input, outputs=text_output)
with gr.Tab("图像分类"):
image_input = gr.Image(type="pil")
image_output = gr.Textbox(label="预测结果")
image_button = gr.Button("预测")
image_button.click(image_prediction, inputs=image_input, outputs=image_output)
demo.launch()
5.3 代码解读与分析
- 文本分类模型:使用
TfidfVectorizer
和MultinomialNB
构建了一个简单的文本分类模型,并使用少量的训练数据进行训练。 - 图像分类模型:定义了一个简单的CNN模型,并加载了预训练的权重。使用
transforms
对输入的图像进行预处理。 - 预测函数:定义了
text_prediction
和image_prediction
两个函数,分别用于文本分类和图像分类的预测。 - Gradio界面:使用
gr.Blocks
创建了一个多模态交互界面,包含文本分类和图像分类两个标签页。用户可以在相应的输入框中输入文本或上传图像,点击按钮进行预测,预测结果将显示在输出框中。
6. 实际应用场景
6.1 智能客服
智能客服可以接受用户的文本、语音或图像输入,根据不同的模态进行相应的处理。例如,用户可以通过语音描述问题,智能客服将语音转换为文本,然后进行文本分类和意图识别,提供相应的解决方案。如果用户上传了相关的图片,智能客服可以对图片进行分析,提供更准确的服务。
6.2 智能家居控制
用户可以通过语音指令或手机APP上的文本输入来控制智能家居设备。例如,用户说“打开客厅的灯”,系统将语音转换为文本,然后根据文本指令控制相应的设备。同时,智能家居系统也可以通过摄像头采集图像,对环境进行监测和分析,实现自动化控制。
6.3 教育领域
在教育领域,多模态交互应用可以提供更加丰富的学习体验。例如,学生可以通过语音提问、上传作业图片等方式与学习系统进行交互。系统可以对学生的语音和图片进行分析,提供个性化的学习建议和反馈。
6.4 医疗诊断
医生可以通过上传患者的病历文本、X光片等多模态数据,利用多模态交互应用进行疾病诊断。系统可以对文本和图像进行分析,辅助医生做出更准确的诊断。
7. 工具和资源推荐
7.1 学习资源推荐
7.1.1 书籍推荐
- 《Python数据分析实战》:介绍了Python在数据分析领域的应用,包括数据处理、可视化等方面的知识。
- 《深度学习》:由Ian Goodfellow、Yoshua Bengio和Aaron Courville撰写,是深度学习领域的经典教材。
- 《自然语言处理入门》:适合初学者学习自然语言处理的基础知识和常用技术。
7.1.2 在线课程
- Coursera上的“深度学习专项课程”:由Andrew Ng教授讲授,涵盖了深度学习的各个方面。
- edX上的“Python for Data Science and AI”:介绍了Python在数据科学和人工智能领域的应用。
- 哔哩哔哩上有很多关于Python和机器学习的免费教程,可以根据自己的需求选择学习。
7.1.3 技术博客和网站
- Medium:有很多技术专家在上面分享关于Python、机器学习和多模态交互的文章。
- 开源中国:提供了丰富的技术文章和开源项目,对开发者有很大的帮助。
- 机器之心:专注于人工智能领域的资讯和技术分享。
7.2 开发工具框架推荐
7.2.1 IDE和编辑器
- PyCharm:是一款专业的Python集成开发环境,具有代码自动补全、调试等功能。
- Visual Studio Code:是一款轻量级的代码编辑器,支持多种编程语言,有丰富的插件可以扩展功能。
7.2.2 调试和性能分析工具
- Py-Spy:用于分析Python程序的性能,找出性能瓶颈。
- PDB:Python自带的调试工具,可以帮助开发者调试代码。
7.2.3 相关框架和库
- TensorFlow:是一个开源的机器学习框架,广泛应用于深度学习领域。
- PyTorch:是另一个流行的深度学习框架,具有动态图的优势。
- NLTK:是一个自然语言处理工具包,提供了丰富的文本处理功能。
7.3 相关论文著作推荐
7.3.1 经典论文
- “Attention Is All You Need”:介绍了Transformer模型,是自然语言处理领域的重要突破。
- “Convolutional Neural Networks for Visual Recognition”:对卷积神经网络在图像识别中的应用进行了详细的阐述。
7.3.2 最新研究成果
- 可以通过arXiv、ACM Digital Library等学术平台查找多模态交互领域的最新研究成果。
7.3.3 应用案例分析
- 《人工智能应用案例集》:收集了人工智能在各个领域的应用案例,对多模态交互应用的开发有一定的参考价值。
8. 总结:未来发展趋势与挑战
8.1 未来发展趋势
- 更加自然的交互方式:未来的多模态交互应用将更加注重用户体验,提供更加自然、便捷的交互方式。例如,结合手势识别、眼动追踪等技术,实现更加直观的交互。
- 多模态融合的深度和广度提升:多模态融合将不仅仅局限于文本、图像和语音,还将涵盖更多的模态,如触觉、嗅觉等。同时,融合的深度也将不断提升,实现更加准确和全面的信息处理。
- 应用领域的拓展:多模态交互应用将在更多的领域得到应用,如智能交通、工业制造、娱乐等。
8.2 挑战
- 数据处理和融合的难度:不同模态的数据具有不同的特点和格式,如何有效地处理和融合这些数据是一个挑战。
- 模型的复杂度和计算资源需求:多模态交互应用通常需要使用复杂的模型,这些模型对计算资源的需求较大,如何在有限的资源下实现高效的计算是一个问题。
- 隐私和安全问题:多模态交互应用需要处理用户的各种敏感信息,如何保障用户的隐私和数据安全是一个重要的挑战。
9. 附录:常见问题与解答
9.1 如何解决Gradio界面加载缓慢的问题?
可以尝试优化模型的推理速度,减少不必要的计算。同时,也可以考虑使用缓存机制,避免重复计算。
9.2 如何提高多模态交互应用的准确性?
可以使用更多的训练数据进行模型训练,选择更合适的模型结构,并进行模型调优。此外,还可以结合多模态融合的方法,综合利用不同模态的数据来提高准确性。
9.3 如何部署多模态交互应用?
可以使用云服务提供商(如AWS、Google Cloud、阿里云等)的服务器进行部署,也可以使用自己的服务器。在部署过程中,需要注意环境配置和安全性问题。
10. 扩展阅读 & 参考资料
- 《Python机器学习实战》
- 《图像识别与深度学习》
- Gradio官方文档(https://gradio.app/docs/)
- PyTorch官方文档(https://pytorch.org/docs/stable/index.html)
- scikit-learn官方文档(https://scikit-learn.org/stable/documentation.html)