揭秘大数据OLAP并行查询:如何让百亿条数据瞬间“答”你的问题
关键词:OLAP、并行查询、大数据、分布式计算、列存储、查询优化、数据分片
摘要:当你面对百亿条销售数据,想知道“2023年各地区Top10畅销商品”时,传统方法可能要等几小时,而OLAP并行查询能让结果“秒出”。本文用“分账本”“多人分工”的生活比喻,拆解OLAP并行查询的核心逻辑——数据分片是“分工基础”,算子并行是“执行步骤”,查询优化是“效率关键”。通过Spark SQL、Apache Kylin的实战案例,让你看懂并行查询如何让大数据“跑起来”,并探讨实时OLAP、云原生等未来趋势。
背景介绍
目的和范围
本文旨在解答一个问题:为什么大数据OLAP需要并行查询?并行查询是怎么工作的? 我们会从“生活场景”到“技术原理”,从“代码实现”到“实战案例”,覆盖OLAP并行查询的核心概念、算法逻辑和应用实践,帮你建立完整的知识体系。
预期读者
- 数据分析师:想知道“为什么我的查询能秒出结果”;
- 大数据工程师:想理解“如何优化OLAP系统的并行性能”;
- 技术爱好者:想搞懂“大数据分析的底层魔法”。
文档结构概述
- 用“超市查账”的故事引出OLAP并行查询的必要性;
- 拆解核心概念(OLAP、并行查询、数据分片、算子并行)及关系;
- 讲解并行查询的算法步骤(用Spark SQL代码示例);
- 用Apache Kylin实战展示“如何搭建OLAP系统”;
- 探讨实际应用场景、工具推荐及未来趋势。
术语表
核心术语定义
- OLAP(在线分析处理):一种快速回答复杂分析问题的技术,比如“2023年各季度华北地区的销售额趋势”,区别于OLTP(在线事务处理,比如“下单”“支付”)。
- 并行查询:将一个大查询拆分成多个子任务,让多台电脑同时执行,缩短总时间。
- 数据分片(Partition):将大表分成小片段(比如按地区分“华北”“华东”“华南”),存放在不同节点上。
- 算子(Operator):查询中的基本操作,比如“过滤(WHERE)”“聚合(SUM)”“排序(ORDER BY)”。
相关概念解释
- 列存储(Columnar Storage):按列存储数据(比如“销售额”列存一起,“地区”列存一起),查询时只读取需要的列,减少IO,适合OLAP。
- 查询优化器(Query Optimizer):将SQL转换成“高效执行计划”的组件,比如“先过滤再聚合”比“先聚合再过滤”快。
缩略词列表
- HDFS:Hadoop分布式文件系统(存大数据的“仓库”);
- SQL:结构化查询语言(和数据“对话”的语言);
- Cube:OLAP中的“立方体”,预计算所有维度组合的度量值(比如“地区+年份+商品”的销售额)。
核心概念与联系
故事引入:超市老板的“查账难题”
假设你是一家连锁超市的老板,有10年的销售数据(百亿条记录),存放在一个巨大的“账本”里。今天你想知道:2023年各地区Top10畅销商品。
- 传统方法:让一个会计逐行翻账本,先找2023年的记录,再按地区分组,计算每个商品的销售额,最后排序取Top10。这可能要花3天——等结果出来,商机早没了。
- OLAP并行查询:让100个会计同时翻“分账本”(每个会计拿一个地区的2023年数据),各自计算自己手里的Top10,最后把所有结果汇总成总的Top10。这只要5分钟!
这个故事里,“分账本”就是数据分片,“100个会计同时工作”就是并行查询,“汇总结果”就是结果合并。OLAP并行查询的核心逻辑,其实就是“分工+协作”。
核心概念解释:像给小学生讲“分工干活”
核心概念一:OLAP——数据的“快速望远镜”
OLAP就像一个“数据望远镜”:它不关心“某一笔订单的详情”(那是OLTP的事),而是帮你“站在高处看趋势”。比如:
- 你想知道“2023年哪个季度的销售额最高?”(时间维度);
- 你想知道“华北地区的消费者更喜欢买什么?”(地区维度);
- 你想知道“哪种商品的利润率最高?”(商品维度)。
OLAP的目标是“快速回答多维度分析问题”,而并行查询是实现这个目标的“发动机”。
核心概念二:并行查询——多人同时“翻账本”
并行查询的本质是“任务拆分+并行执行”。比如,你要计算“1000个学生的平均分”:
- 串行:一个老师改1000份试卷,算平均分;
- 并行:10个老师各改100份,各自算平均分,最后把10个平均分再算总的平均分。
并行查询的优势是“线性加速”(理论上,10个节点能快10倍),但实际中因为“通信开销”(比如汇总结果),加速比会略低,但依然比串行快得多。
核心概念三:数据分片——把“厚账本”分成“薄账本”
数据分片是并行查询的“基础”。就像把一本1000页的账本分成10本100页的,每个会计拿一本。分片的策略有两种:
- 哈希分片(Hash Partitioning):按“地区”的哈希值分(比如“华北”分到分片1,“华东”分到分片2),数据分布均匀;
- 范围分片(Range Partitioning):按“年份”分(比如2020-2022年分到分片1,2023-2025年分到分片2),适合按范围查询。
核心概念四:算子并行——每个会计都做“同样的动作”
算子是查询中的“基本动作”,比如“过滤(找2023年的数据)”“聚合(算销售额总和)”“排序(取Top10)”。算子并行就是“每个分片都执行同样的算子”。比如:
- 每个会计(分片)都先翻自己的账本,把2023年的记录挑出来(过滤算子);
- 然后按商品分组,算每个商品的销售额(聚合算子);
- 再把自己手里的商品按销售额排序,取Top10(排序算子);
- 最后把所有会计的Top10汇总,得到总的Top10(合并算子)。
核心概念之间的关系:像“做饭的团队”
OLAP、并行查询、数据分片、算子并行的关系,就像“做饭的团队”:
- OLAP:目标是“做出美味的菜”(快速分析数据);
- 并行查询:方法是“让多个厨师同时做”(拆分任务并行执行);
- 数据分片:基础是“把食材分成几份”(把数据分成小块,方便分工);
- 算子并行:执行步骤是“每个厨师都做切菜、炒菜”(每个分片都执行同样的操作)。
举个例子:做“番茄炒蛋”(OLAP目标),需要“切番茄”“打鸡蛋”“炒菜”(算子)。如果一个人做(串行),要30分钟;如果3个人同时做(并行),每人做一个步骤(切番茄、打鸡蛋、炒菜),只要10分钟——这就是并行查询的魅力。
核心概念原理和架构的文本示意图
OLAP并行查询的架构通常包括5个组件,就像“查账的流程”:
- 客户端:提出查询请求(比如“查2023年各地区Top10商品”);
- 查询优化器:把SQL转换成“高效执行计划”(比如“先过滤2023年的数据,再聚合,再排序”);
- 调度器:把执行计划拆分成子任务,分配给不同的“会计”(数据节点);
- 数据节点:每个节点有自己的“分账本”(分片数据),执行子任务(比如过滤、聚合);
- 结果合并器:把所有节点的子结果汇总(比如把每个地区的Top10合并成总的Top10),返回给客户端。
Mermaid 流程图:OLAP并行查询的“查账流程”
graph TD
A[客户端:提出查询请求] --> B[查询优化器:生成高效执行计划]
B --> C[调度器:分配子任务给数据节点]
C --> D[数据节点1:处理华北分片的2023年数据]
C --> E[数据节点2:处理华东分片的2023年数据]
C --> F[数据节点3:处理华南分片的2023年数据]
D --> G[结果合并器:汇总所有节点的Top10]
E --> G
F --> G
G --> A[客户端:收到总的Top10结果]
核心算法原理 & 具体操作步骤
算法原理:“查2023年各地区Top10商品”的并行步骤
我们以“计算2023年各地区Top10商品销售额”为例,拆解并行查询的5个核心步骤:
步骤1:数据分片(准备“分账本”)
假设销售数据存放在HDFS上,用哈希分片按“地区”分成3个分片:
- 分片1:华北地区的所有数据;
- 分片2:华东地区的所有数据;
- 分片3:华南地区的所有数据。
每个分片存放在不同的“数据节点”(电脑)上。
步骤2:查询解析与优化(规划“查账流程”)
客户端发送的SQL是:
SELECT region, product_id, SUM(sales_amount) AS total_sales
FROM sales
WHERE year = 2023
GROUP BY region, product_id
ORDER BY total_sales DESC
LIMIT 10
查询优化器会把这个SQL转换成逻辑执行计划(比如“过滤→分组→聚合→排序→限制”),然后优化成物理执行计划(比如“每个分片先过滤2023年的数据,再聚合,再局部排序,最后汇总”)。
步骤3:任务调度(分配“查账任务”)
调度器把物理执行计划拆分成3个子任务,分配给对应的“数据节点”:
- 数据节点1:处理分片1(华北)的子任务;
- 数据节点2:处理分片2(华东)的子任务;
- 数据节点3:处理分片3(华南)的子任务。
步骤4:并行执行(每个“会计”做自己的事)
每个数据节点执行以下操作(算子并行):
- 过滤(Filter):从自己的分片里找出“year=2023”的记录(比如华北分片的2023年数据);
- 分组聚合(GroupBy + Sum):按“region+product_id”分组,计算每个商品的“total_sales”(比如华北地区“矿泉水”的销售额总和);
- 局部排序(Sort):把自己的结果按“total_sales”降序排序,取Top10(比如华北地区的Top10商品)。
步骤5:结果合并(汇总“查账结果”)
结果合并器把3个数据节点的“局部Top10”收集起来,做全局排序(比如把华北、华东、华南的Top10合并,取总的Top10),然后返回给客户端。
具体操作步骤:用Spark SQL实现并行查询
Spark SQL是Apache Spark的组件,支持分布式OLAP查询。我们用Spark SQL来实现上面的查询,看看并行查询是如何工作的。
步骤1:准备数据(用Parquet列存储)
首先,把销售数据转换成Parquet格式(列存储,适合OLAP),存放在HDFS上。Parquet的优势是“查询时只读取需要的列”(比如“region”“product_id”“sales_amount”“year”),减少IO。
步骤2:编写Spark SQL代码
# 1. 创建SparkSession(Spark的入口)
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("OLAPParallelQuery").getOrCreate()
# 2. 读取Parquet数据(自动分片)
sales_data = spark.read.parquet("hdfs://path/to/sales_data.parquet")
# 查看数据结构:sales_data.printSchema()
# 输出:root
# |-- region: string (nullable = true)
# |-- product_id: string (nullable = true)
# |-- sales_amount: double (nullable = true)
# |-- year: int (nullable = true)
# 3. 注册临时表(方便写SQL)
sales_data.createOrReplaceTempView("sales")
# 4. 执行查询(Spark自动并行处理)
query = """
SELECT region, product_id, SUM(sales_amount) AS total_sales
FROM sales
WHERE year = 2023
GROUP BY region, product_id
ORDER BY total_sales DESC
LIMIT 10
"""
result = spark.sql(query)
# 5. 显示结果(秒级返回)
result.show()
# 输出:
# +------+----------+-----------+
# |region|product_id|total_sales|
# +------+----------+-----------+
# | 华北 | 1001 | 12345.67|
# | 华东 | 2002 | 11234.56|
# | 华南 | 3003 | 10123.45|
# | ... | ... | ... |
# +------+----------+-----------+
步骤3:代码解读——并行在哪里?
Spark SQL的并行处理体现在以下几个方面:
- 自动分片:Spark会把Parquet数据分成多个“partition”(默认按文件大小分,比如128MB一个partition),每个partition存放在不同的“executor”(数据节点)上;
- 算子并行:每个executor对自己的partition执行“过滤→聚合→局部排序”操作,比如executor1处理华北partition的2023年数据,executor2处理华东partition的2023年数据;
- 结果合并:Spark的“driver”节点(主节点)把所有executor的“局部Top10”收集起来,做全局排序,取总的Top10。
数学模型和公式 & 详细讲解 & 举例说明
并行查询的“加速比”:为什么并行能快?
加速比(Speedup) 是衡量并行查询效率的核心指标,公式为:
Speedup=TserialTparallel
\text{Speedup} = \frac{T_{\text{serial}}}{T_{\text{parallel}}}
Speedup=TparallelTserial
其中:
- (T_{\text{serial}}):串行执行时间(一个节点执行整个查询的时间);
- (T_{\text{parallel}}):并行执行时间(多个节点执行的时间)。
举例:假设串行执行时间是100秒,用10个节点并行执行,时间是15秒,那么加速比是:
Speedup=10015≈6.67
\text{Speedup} = \frac{100}{15} \approx 6.67
Speedup=15100≈6.67
这意味着,并行查询比串行快了6.67倍。
理想情况:加速比等于节点数(比如10个节点,加速比10),但实际中因为“通信开销”(比如结果合并),加速比会低于节点数。比如,10个节点的加速比可能是8,而不是10。
数据分片的“均匀性”:避免“木桶效应”
数据分片的均匀性直接影响并行查询的性能。如果分片不均匀(比如一个分片有100万条数据,另一个只有10万条),那么总的执行时间取决于“处理最多数据的节点”(木桶效应)。
哈希分片的均匀性公式:
分片ID=hash(key)mod 分片数
\text{分片ID} = \text{hash}(\text{key}) \mod \text{分片数}
分片ID=hash(key)mod分片数
其中:
- (\text{key}):分片键(比如“region”);
- (\text{hash}(\text{key})):对key做哈希运算(比如MD5);
- (\text{分片数}):比如10。
举例:如果“region”的取值是“华北”“华东”“华南”“西南”“西北”,那么哈希分片后,每个分片的数量会比较均匀(比如每个分片有2个地区的数据)。
查询优化的“成本模型”:选择“最快的路线”
查询优化器的核心是“成本模型”(Cost Model),它会计算不同执行计划的“成本”(比如IO次数、CPU时间),选择成本最低的计划。
成本模型的公式(简化版):
Cost=IO Cost+CPU Cost+Network Cost
\text{Cost} = \text{IO Cost} + \text{CPU Cost} + \text{Network Cost}
Cost=IO Cost+CPU Cost+Network Cost
其中:
- (\text{IO Cost}):读取数据的时间(比如从HDFS读1GB数据需要1秒);
- (\text{CPU Cost}):处理数据的时间(比如聚合100万条数据需要0.5秒);
- (\text{Network Cost}):传输数据的时间(比如从节点1传100MB数据到节点2需要0.1秒)。
举例:对于“先过滤再聚合”和“先聚合再过滤”两个计划,查询优化器会计算它们的成本:
- 先过滤再聚合:IO Cost(读100万条数据)+ CPU Cost(聚合100万条)= 1.5秒;
- 先聚合再过滤:IO Cost(读1亿条数据)+ CPU Cost(聚合1亿条)+ IO Cost(过滤1亿条)= 10.5秒。
显然,“先过滤再聚合”的成本更低,所以查询优化器会选择这个计划。
项目实战:用Apache Kylin搭建OLAP系统
为什么选择Apache Kylin?
Apache Kylin是专门为大数据OLAP设计的开源引擎,它的核心特点是“预计算Cube”——提前计算所有可能的维度组合的度量值(比如“地区+年份+商品”的销售额),存放在HBase中。查询时,直接从Cube中读取结果,不需要扫描原始数据,所以查询速度非常快(毫秒级)。
开发环境搭建
需要以下组件(按顺序安装):
- Hadoop集群:包括HDFS(存数据)、YARN(资源管理);
- Hive:数据仓库,用于存储销售数据;
- Apache Kylin:OLAP引擎,连接Hadoop和Hive。
源代码详细实现和代码解读
步骤1:在Hive中创建销售表
首先,在Hive中创建销售表(用Parquet格式):
CREATE TABLE sales (
region STRING,
product_id STRING,
sales_amount DOUBLE,
year INT
)
STORED AS PARQUET;
然后,导入数据(假设数据来自CSV文件):
LOAD DATA INPATH 'hdfs://path/to/sales.csv' INTO TABLE sales;
步骤2:在Kylin中创建模型(Model)
模型是Kylin中的“数据结构定义”,包括维度(分析的角度,比如“region”“year”)和度量(分析的指标,比如“sum(sales_amount)”)。
- 登录Kylin控制台(默认地址:http://localhost:7070);
- 点击“Model”→“Create Model”;
- 选择Hive中的“sales”表;
- 定义维度:选中“region”“product_id”“year”;
- 定义度量:选中“sales_amount”,选择“sum”(求和);
- 保存模型(命名为“sales_model”)。
步骤3:在Kylin中构建Cube(立方体)
Cube是Kylin中的“预计算结果”,它会提前计算所有维度组合的度量值。比如,“region+year”的销售额、“product_id+year”的销售额、“region+product_id+year”的销售额,都会被预计算并存在HBase中。
- 点击“Cube”→“Create Cube”;
- 选择刚才创建的“sales_model”;
- 配置Cube参数:
- 分片数(Partition Count):10(并行构建的任务数);
- 保留时间(Retention Time):7天(Cube的有效期);
- 启动构建任务(Kylin会用MapReduce并行处理每个分片的数据);
- 等待构建完成(时间取决于数据量,比如10亿条数据需要1小时)。
步骤4:执行查询(毫秒级返回)
构建完成后,在Kylin的查询界面输入SQL:
SELECT region, product_id, SUM(sales_amount) AS total_sales
FROM sales
WHERE year = 2023
GROUP BY region, product_id
ORDER BY total_sales DESC
LIMIT 10
点击“Execute”,结果会在100毫秒内返回——这是因为Kylin直接从Cube中读取预计算好的结果,不需要扫描原始数据。
代码解读与分析
Kylin的并行处理体现在Cube构建阶段:
- 数据分片:Kylin会把销售数据分成10个分片(按“year”范围分片);
- 并行构建:每个分片由一个Map任务处理(用Hadoop的MapReduce),每个Map任务计算自己分片内的维度组合的度量值;
- 结果合并:Reduce任务把相同维度组合的度量值合并,存放在HBase中。
查询阶段,Kylin的查询引擎会解析SQL,找到对应的Cube,然后从HBase中读取预计算好的结果,返回给客户端。这就是Kylin“秒级查询”的秘密。
实际应用场景
OLAP并行查询的应用场景非常广泛,只要需要“快速分析海量数据”的地方,都能用到:
1. 电商:实时销售监控
比如,淘宝需要实时监控“双11”期间的销售数据,比如“每分钟的Top10商品”“每个地区的销售额趋势”。用OLAP并行查询,能让运营人员实时看到数据,及时调整策略(比如增加热门商品的库存)。
2. 金融:风险分析
比如,银行需要分析“每个客户的交易行为”,识别异常(比如“一天内转账10次,金额超过100万”)。用OLAP并行查询,能快速扫描亿级交易数据,及时发现风险。
3. 物流:路径优化
比如,京东需要分析“每个地区的快递量”,优化配送路线(比如“华北地区的快递量增长了20%,需要增加10辆配送车”)。用OLAP并行查询,能快速得到地区快递量的趋势,帮助物流部门做出决策。
4. 医疗:疫情监控
比如,卫健委需要分析“每个省份的新冠病例数”,监控疫情趋势(比如“广东省的病例数连续3天下降”)。用OLAP并行查询,能快速汇总各省的数据,及时发布疫情通报。
工具和资源推荐
工具推荐
- OLAP引擎:Apache Kylin(离线OLAP,预计算Cube)、Apache Druid(实时OLAP,支持实时数据摄入)、ClickHouse(列存储OLAP数据库,查询速度快);
- 分布式计算框架:Apache Spark(支持SQL查询,适合批处理)、Presto(分布式SQL查询引擎,适合跨数据源查询);
- 云原生OLAP:AWS Redshift(亚马逊的云OLAP服务)、Google BigQuery(谷歌的云OLAP服务)、阿里云AnalyticDB(阿里的云OLAP服务)。
资源推荐
- 书籍:《大数据OLAP实战》(讲解OLAP的原理和实践)、《分布式计算:原理与实践》(讲解并行计算的核心概念);
- 文档:Apache Kylin官方文档(https://kylin.apache.org/)、Spark SQL官方文档(https://spark.apache.org/sql/);
- 课程:Coursera《大数据分析》(讲解OLAP和并行查询的应用)、Udemy《Apache Kylin实战》(手把手教你搭建OLAP系统)。
未来发展趋势与挑战
未来趋势
- 实时OLAP:随着实时数据的增长(比如直播数据、IoT数据),实时OLAP会成为主流。比如,Apache Druid支持“实时数据摄入+低延迟查询”,能让用户实时看到数据变化。
- 云原生OLAP:越来越多的企业会把OLAP系统迁移到云上,因为云原生OLAP支持“弹性扩展”(比如高峰期增加节点,低谷期减少节点),降低成本。
- 智能查询优化:用机器学习预测查询的执行时间,优化任务调度。比如,根据历史数据,预测“某条查询需要10个节点”,自动分配10个节点执行。
- 多源数据融合:支持从关系数据库(MySQL)、NoSQL(MongoDB)、日志(Elasticsearch)等多源数据中查询,统一分析。
挑战
- 数据量增长:随着数据量从“TB级”增长到“EB级”,如何提高并行查询的效率(比如减少通信开销)成为挑战;
- 实时处理:实时OLAP需要“每秒处理百万条数据”,同时支持“毫秒级查询”,这对系统的吞吐量和延迟提出了很高的要求;
- 成本控制:云原生OLAP的成本取决于“节点数”和“存储量”,如何在“性能”和“成本”之间平衡,是企业需要解决的问题;
- 易用性:OLAP系统的配置和优化比较复杂,如何让非技术人员(比如数据分析师)轻松使用,是未来的发展方向。
总结:学到了什么?
核心概念回顾
- OLAP:快速回答多维度分析问题的技术,像“数据望远镜”;
- 并行查询:把大查询拆分成子任务,让多台电脑同时执行,像“多人分工干活”;
- 数据分片:把大表分成小片段,存放在不同节点上,像“分账本”;
- 算子并行:每个分片执行同样的操作(过滤、聚合、排序),像“每个会计都做同样的动作”。
概念关系回顾
OLAP需要并行查询来处理大数据,并行查询需要数据分片来分工,算子并行来执行每个分工的任务。它们的关系就像“做饭的团队”:OLAP是“目标”,并行查询是“方法”,数据分片是“基础”,算子并行是“执行步骤”。
思考题:动动小脑筋
- 如果你是一个大数据工程师,要设计一个OLAP系统,你会选择哪种数据分片策略?为什么?(提示:考虑数据分布、查询类型)
- 实时OLAP和离线OLAP有什么区别?并行查询在实时OLAP中的挑战是什么?(提示:实时OLAP需要处理流数据,延迟要求高)
- 你能想到生活中还有哪些场景需要用到OLAP并行查询吗?(提示:比如交通监控、社交媒体分析)
附录:常见问题与解答
Q1:为什么OLAP要用列存储而不是行存储?
A:列存储按列存储数据,查询时只需要读取需要的列(比如“sales_amount”“region”),减少IO。而行存储按行存储,查询时需要读取整行数据(比如“订单ID”“客户ID”“销售额”“地区”),IO量大。比如,查询“2023年各地区的销售额”,列存储只需要读取“region”“sales_amount”“year”三列,而行存储需要读取所有列,所以列存储更快。
Q2:并行查询的开销有哪些?
A:并行查询的开销主要有三个:
- 通信开销:节点之间传输数据(比如结果合并);
- 调度开销:分配任务给节点;
- 合并开销:汇总多个节点的结果。
这些开销会导致并行查询的加速比低于节点数(比如10个节点的加速比是8,而不是10)。
Q3:如何优化并行查询的性能?
A:优化并行查询的性能可以从以下几个方面入手:
- 选择合适的分片策略:比如哈希分片(数据分布均匀)、范围分片(适合按范围查询);
- 优化查询计划:比如先过滤再聚合(减少数据量)、使用索引(加快查询速度);
- 使用列存储:减少IO;
- 增加节点数:提高并行度(比如从10个节点增加到20个节点,加速比可能从8提高到15);
- 减少通信开销:比如把数据存放在节点本地(避免跨节点传输)、使用压缩(减少数据量)。
扩展阅读 & 参考资料
- 《大数据OLAP:原理与实践》(作者:李战怀):讲解OLAP的核心原理和实践案例;
- Apache Kylin官方文档(https://kylin.apache.org/):详细介绍Kylin的安装、配置和使用;
- Spark SQL官方文档(https://spark.apache.org/sql/):讲解Spark SQL的并行查询机制;
- 《分布式计算:原理与实践》(作者:Andrew S. Tanenbaum):讲解并行计算的核心概念和算法;
- Apache Druid官方文档(https://druid.apache.org/):介绍实时OLAP的原理和实践。
结语:OLAP并行查询是大数据分析的“发动机”,它让百亿条数据能“瞬间回答”我们的问题。通过本文的讲解,希望你能理解并行查询的核心逻辑——“分工+协作”,并能在实际工作中应用这些知识,让数据“跑起来”,为企业创造价值。
如果你有任何问题或想法,欢迎在评论区留言,我们一起讨论!