第十八节:图像梯度与边缘检测-Scharr 算子

边缘检测是计算机视觉领域最基础且重要的任务之一。在众多边缘检测算子中,Scharr算子以其独特的优势成为OpenCV中的重要工具。本文将深入探讨Scharr算子的工作原理、实现细节以及实际应用场景,带领读者全面掌握这一高效的边缘检测技术。

一、图像梯度基础概念

1.1 什么是图像梯度

图像梯度表示图像亮度变化的速率和方向。在数学上,梯度是一个矢量:

∇f = [∂f/∂x, ∂f/∂y]

其中:

  • ∂f/∂x 表示x方向的梯度

  • ∂f/∂y 表示y方向的梯度

梯度幅值计算公式:
G = √(Gx² + Gy²)

梯度方向计算公式:
θ = arctan(Gy/Gx)

1.2 梯度与边缘的关系

图像中的边缘对应着像素强度的剧烈变化区域。通过计算梯度,可以:

  • 检测边缘位置(梯度幅值最大处)

  • 确定边缘方向(梯度方向&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值