第二十七节:轮廓检测-凸包检测

在计算机视觉领域,轮廓检测凸包检测是两个基础但至关重要的技术。它们如同图像分析的"探照灯",能够帮助计算机从复杂的像素矩阵中提取出有意义的形状信息。

一、轮廓检测基础

1.1 什么是图像轮廓

图像轮廓可以理解为连接所有连续像素点的曲线,这些像素点具有相同的颜色或灰度值。在数字图像处理中,轮廓通常用于表示物体的边界特征。想象一下用笔勾勒物体边缘的过程,得到的线条就是轮廓的直观体现。

数学上,轮廓可以表示为有序的点集合:

C = {p1, p2, ..., pn} 

其中每个点pi(xi, yi)都是图像中的二维坐标点,且相邻点之间满足连通性条件。

1.2 OpenCV轮廓检测实现

OpenCV提供了findContours()函数进行轮廓检测,其基本用法如下:

contours,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值