在计算机视觉领域,轮廓检测和凸包检测是两个基础但至关重要的技术。它们如同图像分析的"探照灯",能够帮助计算机从复杂的像素矩阵中提取出有意义的形状信息。
一、轮廓检测基础
1.1 什么是图像轮廓
图像轮廓可以理解为连接所有连续像素点的曲线,这些像素点具有相同的颜色或灰度值。在数字图像处理中,轮廓通常用于表示物体的边界特征。想象一下用笔勾勒物体边缘的过程,得到的线条就是轮廓的直观体现。
数学上,轮廓可以表示为有序的点集合:
C = {p1, p2, ..., pn}
其中每个点pi(xi, yi)都是图像中的二维坐标点,且相邻点之间满足连通性条件。
1.2 OpenCV轮廓检测实现
OpenCV提供了findContours()
函数进行轮廓检测,其基本用法如下:
contours,