第四十三节:人脸检测与识别-人脸识别基础 (Eigenfaces, Fisherfaces, LBPH)

引言

人脸识别技术是计算机视觉领域最具应用价值的方向之一,广泛应用于安防监控、身份认证、人机交互等领域。本文将通过OpenCV框架,深入解析人脸检测与识别的核心算法(Eigenfaces/Fisherfaces/LBPH),并提供完整的代码实现。

第一部分:人脸检测基础

1.1 人脸检测原理

人脸检测是人脸识别的首要步骤,主要目标是在图像中定位人脸区域。OpenCV提供了多种检测方法:

Haar级联分类器
  • 基于Haar特征和AdaBoost算法

  • 使用积分图加速特征计算

  • 预训练模型路径:haarcascade_frontalface_default.xml

代码示例:

import cv2

# 加载预训练模型
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值