引言
在计算机视觉领域,目标检测与跟踪是两项核心任务。传统方法(如Haar级联、HOG+SVM)受限于特征表达能力,而深度学习通过卷积神经网络(CNN)实现了质的飞跃。本文将重点介绍如何利用OpenCV的dnn
模块结合YOLO和SSD两大主流模型实现高效目标检测,并探讨跟踪算法的集成方法。
一、目标检测与跟踪基础
1.1 目标检测的核心挑战
-
定位与分类:需同时确定目标位置(Bounding Box)和类别(Class)
-
多尺度问题:目标在图像中可能以不同尺寸出现
-
实时性要求:实际应用往往需要高帧率处理
1.2 深度学习模型演进
模型 | 特点 | 速度 vs 精度平衡 |
---|---|---|
R-CNN系列 |