第四十六节:目标检测与跟踪-基于深度学习的目标检测 (YOLO, SSD)

引言

在计算机视觉领域,目标检测与跟踪是两项核心任务。传统方法(如Haar级联、HOG+SVM)受限于特征表达能力,而深度学习通过卷积神经网络(CNN)实现了质的飞跃。本文将重点介绍如何利用OpenCV的dnn模块结合YOLOSSD两大主流模型实现高效目标检测,并探讨跟踪算法的集成方法。

一、目标检测与跟踪基础

1.1 目标检测的核心挑战

  • 定位与分类:需同时确定目标位置(Bounding Box)和类别(Class)

  • 多尺度问题:目标在图像中可能以不同尺寸出现

  • 实时性要求:实际应用往往需要高帧率处理

1.2 深度学习模型演进

模型 特点 速度 vs 精度平衡
R-CNN系列
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值