第四十九节:图像分割-基于深度学习的图像分割

1. 引言

在计算机视觉领域,图像分割(Image Segmentation)是一项基础且关键的技术,其目标是将图像划分为多个具有特定语义的区域。随着深度学习技术的突破,基于神经网络的图像分割方法在精度和效率上都实现了质的飞跃。本文将重点介绍如何利用OpenCV结合深度学习模型实现高效的图像分割。

2. 图像分割基础

2.1 分割类型

  • 语义分割:为每个像素分配类别标签

  • 实例分割:区分同类物体的不同实例

  • 全景分割:语义分割与实例分割的结合

2.2 传统方法局限

传统方法(阈值分割、边缘检测、区域生长等)依赖人工设计的特征,在复杂场景下存在明显不足:

  • 光照变化敏感

  • 纹理复杂区域处理困难

  • 语义理解能力有限

3. 深度学习分割模型

3.1 主流架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值