本来背文献、谈观点就够了,现在没数据、没方法,直接被贴“空泛”标签,论文就寄了。
更惨的是,多数文科生没学过啥实证方法,导师也可能“只懂思辨不懂实证”。
别怕,这份“保命指南”来自一个靠实证发过核心和SCI的经验分享,帮你少踩坑,快毕业!
1.“小题大做”才是真功夫
你说:“我想研究AI时代英语教学的挑战!”听起来牛,但这和“我想研究宇宙”没啥区别。建议你换个思路,比如:“大学英语老师对ChatGPT的使用频率与态度调查。”这样靠搞个问卷,做个访谈,稳妥地就把论文写完。
一句话:别一上来搞大格局,先从身边的小问题出发,才能写出花。
2. 理论搬过来,也要“接地气”
国外的理论好是好,但有时会水土不服。
比如研究中国学生在英语演讲里爱“自谦开场”,直接用西方说服理论可能会忽略“谦虚即美德”的文化逻辑。所以根据自己的研究需求,可以稍微“魔改”理论,才更贴合我们自己的语境。
3. 数据要有,别画大饼
选题之前,先想清楚你要的数据能不能搞到!
比如研究“李子柒视频如何传播中国文化”,可以拿她的YouTube视频当语料,观众评论当文本。反过来,有一个惊艳的idea,数据却下不来,那就是空想。
1. SPSS是起点,Python是进阶
刚开始搞量化,建议从SPSS入手,界面友好,点点鼠标就能跑出结果。
等你混熟了,可以考虑上Python,用它分析大数据、画图、跑模型都不在话下。当然,学R也OK,看你喜好。
2. 定性研究也能做出数据味儿
做访谈、看文本不是瞎聊,通过“编码”就能把主观经验变成可分析的数据。
比如研究大学生用AI写作的体验,可以把他们的回答按“便利”“焦虑”“依赖”等关键词分类,再看这些标签的频率和组合,瞬间科学起来!
3. 混合方法:质+量=双倍快乐
如果你既关心“多少人这么做”,也想知道“为什么这么做”,混合方法就是一个好选择。
比如想知道海外观众怎么看李子柒,可以先用播放量、点赞数搞个大概趋势,再想办法整个访谈或分析评论内容,看他们喜欢的点在哪儿。用数据撑框架,用文字讲故事,可读性和说服力双提升。
1. 文献综述别变成“堆文献”
文献综述的目的是构建学术背景,而不是罗列谁说了什么。
试试分类总结、比对观点,找到已有研究的空白——比如关于“词汇多样性与写作质量”的研究很多,但对学生在写作中“如何选词”的讨论较少,这就是切入点。综述写得好,后面的研究自然“有地可站”。
2. 数据可视化,让研究“一目了然”
无论是词频分析、结构分布还是情绪波动,一张好图都比千言万语有效。
分析新闻语篇中的被动句,来个条形图。研究演讲中的情绪表达,试试折线图。合理使用图表,既美观又实用,还能体现对数据的理解和表达能力。
3. 理论“用在点子上”,才能真正“上价值”
很多人写论文把理论摆在前面,然后再也不提了。其实真正的亮点,是用理论去“点石成金”。
比如分析李子柒视频,光说她种田种花没意思,加上符号学解释:农具=文化符号、节气=时间意象,这样分析才有“深度buff”。
实证研究不是文科的“敌人”,而是帮我们把复杂问题讲清楚、把观察现象说服人的新方式。
不用变成数据科学家,也能写出有理有据、有趣有料的好论文。愿你文献不再混乱,代码不再恐惧,年年发论文,岁岁被引用。
博主整理一篇【论文资·料】以及论文写作发刊大礼包~~
可提供论文指导❤️【本硕博毕业论文、SCI、CCF-ABC、中文核心、EI会议期刊】评职称、硕博升学、本升海外学府