一、什么是Prompt(提示词)?
用一句话解释:
“Prompt是你给AI的‘任务说明书’,就像点奶茶时告诉店员‘少冰、三分糖、加椰果’一样——越具体,AI越能给你想要的答案。”
二、为什么AI不能“一问即达”?
人们常期望:“输入‘帮我写论文’,AI就自动生成完美学术文章”
现实情况:AI更像“聪明但需要指导的助手”
局限性:
无法自动识别你的专业领域深度(如法学硕士vs普通民众的需求差异)
难以判断模糊指令的隐含条件(如“最新研究”默认指近3年还是近5年?)
可能过度泛化(如“法律风险”涵盖合同、侵权、合规等多维度)
解决方案:
用Prompt给AI“脚手架”(参考下文3个原则)
三、3个通用优化原则(适用所有场景)
原则1:角色明确——给AI一个“人设”
为什么重要:AI需要知道“用谁的角度”回答问题。
学术案例:
❌ 模糊提问:“解释量子计算”
✅ 优化提问:“假设你是大学教授,向大一新生用生活案例(如骰子、密码锁)解释量子计算的基本原理”
法律案例:
❌ 模糊提问:“合同违约怎么办”
✅ 优化提问:“你是一名中国民商法律师,根据《民法典》第584条,分析房屋租赁合同中房东提前解约的赔偿责任,需区分承租人是否已实际装修”
原则2:任务具体——拒绝“假大空”要求
核心方法:用数字/格式/范围等限定条件。
学术案例:
❌ 模糊任务:“写文献综述”
✅ 具体任务:“总结近3年《Science》上关于CRISPR基因编辑伦理争议的5篇核心论文,按‘技术风险’‘伦理冲突’‘监管建议’分类,每类不超过200字”
法律案例:
❌ 模糊任务:“审核合同风险”
✅ 具体任务:“对比《劳动合同范本(2023人社部版)》第8条与当前合同第5.3款,用表格列出差异点,并标注违反《劳动法》第36条的内容”
原则3:结构化步骤(此处仅进行举例
学术案例:
请按顺序完成:
① 解释卡尔曼滤波的基本公式
② 举例说明它在无人机定位中的实际应用
③ 指出该方法的2个局限性
法律案例:
请分步骤分析:
① 根据《刑法》第264条,盗窃价值5000元手机是否构成“数额较大”?
② 若嫌疑人不满16周岁,应如何处理?
③ 附相关司法解释名称及条文号