提示词优化技巧

一、什么是Prompt(提示词)?

用一句话解释:

“Prompt是你给AI的‘任务说明书’,就像点奶茶时告诉店员‘少冰、三分糖、加椰果’一样——越具体,AI越能给你想要的答案。”

二、为什么AI不能“一问即达”?

人们常期望:“输入‘帮我写论文’,AI就自动生成完美学术文章”

现实情况:AI更像“聪明但需要指导的助手”

局限性:

无法自动识别你的专业领域深度(如法学硕士vs普通民众的需求差异)

难以判断模糊指令的隐含条件(如“最新研究”默认指近3年还是近5年?)

可能过度泛化(如“法律风险”涵盖合同、侵权、合规等多维度)

解决方案:

用Prompt给AI“脚手架”(参考下文3个原则)

 

三、3个通用优化原则(适用所有场景)

原则1:角色明确——给AI一个“人设”

为什么重要:AI需要知道“用谁的角度”回答问题。

学术案例:

❌ 模糊提问:“解释量子计算”

✅ 优化提问:“假设你是大学教授,向大一新生用生活案例(如骰子、密码锁)解释量子计算的基本原理”

法律案例:

❌ 模糊提问:“合同违约怎么办”

✅ 优化提问:“你是一名中国民商法律师,根据《民法典》第584条,分析房屋租赁合同中房东提前解约的赔偿责任,需区分承租人是否已实际装修”

原则2:任务具体——拒绝“假大空”要求

核心方法:用数字/格式/范围等限定条件。

学术案例:

❌ 模糊任务:“写文献综述”

✅ 具体任务:“总结近3年《Science》上关于CRISPR基因编辑伦理争议的5篇核心论文,按‘技术风险’‘伦理冲突’‘监管建议’分类,每类不超过200字”

法律案例:

❌ 模糊任务:“审核合同风险”

✅ 具体任务:“对比《劳动合同范本(2023人社部版)》第8条与当前合同第5.3款,用表格列出差异点,并标注违反《劳动法》第36条的内容”

原则3:结构化步骤(此处仅进行举例

学术案例:

请按顺序完成:  

① 解释卡尔曼滤波的基本公式  

② 举例说明它在无人机定位中的实际应用  

③ 指出该方法的2个局限性  

法律案例:

请分步骤分析:  

① 根据《刑法》第264条,盗窃价值5000元手机是否构成“数额较大”?  

② 若嫌疑人不满16周岁,应如何处理?  

③ 附相关司法解释名称及条文号 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值