- 博客(40)
- 收藏
- 关注
原创 大模型微调从入门到精通
摘要: 本文系统探讨了大模型微调技术及其应用。微调(Fine-tuning)通过在预训练模型基础上进行针对性训练,可强化特定任务能力、降低幻觉、提升一致性,并避免数据泄露。文章对比了监督微调(SFT)与强化学习(RLHF),介绍了LoRA、QLoRA、适配器调整等参数高效微调方法(PEFT),分析其原理与适用场景。以代码示例展示LoRA实操,并指出微调技术门槛低,百亿参数模型即可满足多数场景。此外,微调广泛应用于API编排(如GPT-4Tools)、人物对话模拟(如Character.ai)及多语言支持等领
2025-05-30 20:50:50
816
原创 LoRA:高效微调预训练模型的利器
LoRA(低秩适应)是一种高效微调大模型的方法,核心思想是在冻结预训练模型权重的基础上,通过向Transformer层注入可训练的低秩分解矩阵(A和B)来减少参数量。该方法将全参数微调的增量矩阵分解为两个小矩阵的低秩近似,显著降低训练参数(如从3.9亿降至0.43亿)。优势包括:1. 高效训练(降低显存和耗时);2. 灵活存储(仅需保存小型适配器);3. 性能接近全参数微调。代码实现涉及LoraConfig配置、PeftModel应用及合并推理等步骤,适用于多任务适配场景。
2025-05-30 19:31:45
1244
原创 提示词优化技巧
摘要: Prompt是指导AI生成内容的“任务说明书”,越具体效果越好。由于AI无法自动识别模糊需求(如专业深度、隐含条件),需通过优化提示词提升输出质量。三大核心原则:1)角色明确(如“以教授身份解释量子计算”);2)任务具体(限定数字、格式等,如“总结近3年5篇核心论文”);3)结构化步骤(分点列出分析要求)。通过提供清晰“脚手架”,可显著提高AI回答的精准度。
2025-05-29 20:16:58
517
原创 RAG技术:私有大模型知识更新的最佳实践
本文探讨了RAG(检索增强生成)技术在大模型私有化部署中的应用优势及实现方式。RAG通过外挂知识库解决了大模型知识更新困难、输出不可解释及数据安全三大核心问题,可实时更新知识、确保确定性输出并保护隐私数据。文章详细介绍了四种适用于RAG的数据库类型:向量数据库(处理非结构化数据)、图数据库(存储结构化关系)、知识图谱(语义推理)和混合架构数据库(综合检索),分析其适用场景与技术特点。RAG技术为政企单位提供了低成本、高效率的大模型定制化解决方案,显著提升了私有化部署的实用性和安全性。
2025-05-29 17:58:20
899
原创 Transformer模型:多头注意力机制深度解析
本文详细解析了Transformer多头注意力机制中的线性变换层实现。首先介绍了多头注意力的基本结构,输入向量通过三个不同的权重矩阵(W^Q、W^K、W^V)分别投影到查询、键、值空间。其次重点讲解了PyTorch中nn.Linear的工作原理,包括参数初始化、前向传播和自动微分过程。最后阐述了注意力计算后的拼接(Concat)操作及其线性变换的必要性:通过可学习的权重矩阵整合多头信息,将不同子空间的表示融合为统一特征,同时保持维度一致性(d_model)。整个过程通过形状重塑、转置和线性层实现,使模型能从
2025-05-29 15:51:07
1394
原创 单卡即可微调大模型!内存占用仅1/8
华中科技大学与***中文大学团队提出新型LoRA微调框架GOAT,通过自适应奇异值初始化与混合专家梯度对齐策略,有效解决低秩适应(LoRA)性能不足问题。该技术在保持基座模型参数冻结的同时,仅微调极小比例参数,在25项多领域任务中实现接近甚至超越全参数微调的性能。实验显示,GOAT在自然语言生成、图像分类等任务中显著优于主流LoRA变体,最高提升6.3%,且内存占用降低8倍,单卡即可训练LLaMA7B模型。该工作为高效模型微调提供了创新解决方案,已被ICML2025接收。
2025-05-28 18:45:47
668
原创 Qwen3大模型本地部署及Python调用指南
阿里开源Qwen3系列大模型全线发布,在代码、数学等基准测试中表现优异。文章介绍了通过Ollama(需≥0.6.6版本)快速本地部署Qwen3模型的方法,包括模型选择、显存占用分析和推理速度测试。特别说明该系列支持关闭思考模式(添加/no_think)以提升效率。同时展示了Python调用技巧:使用ollama库实现文本生成/对话任务,以及基于pydantic-ai构建支持函数调用的智能体应用。文末提供了相关技术文档链接供进一步参考。
2025-05-28 14:49:30
1255
原创 MCP实战:打造一个实时获取天气信息的小助手
本文介绍了大模型上下文协议(MCP)及其在天气信息查询中的应用。MCP是一种标准化协议,允许大语言模型与外部系统安全交互,提供实时数据访问和复杂操作执行能力。相比传统API调用方式,MCP具有安全性高、集成简单、支持双向通信等优势。文章通过一个实战项目详细展示了如何基于MCP开发天气查询工具,包括服务器和客户端实现,以及使用MCPInspector进行调试的过程。该工具可查询城市天气预警和未来天气预报,演示了MCP在实际场景中的应用。文章还讨论了MCP的进阶应用场景和开发最佳实践,为开发者提供了构建AI工具
2025-05-28 09:59:55
598
原创 AI为何博而不精?模型微调揭秘精准补课术
模型微调(Fine-tuning)是让通用AI大模型快速适配专业领域的关键技术。它通过二次训练预训练模型(如DeepSeek、LLaMA等),仅调整1%-10%参数,用少量领域数据(如法律案例库)就能使AI具备专业能力。核心技术包括参数优化、数据适配和领域约束,使模型从"博而不精"变为领域专家。当前主流实现方式有三种:QLoRA通过量化和低秩矩阵降低显存需求;Prompt Engineering利用提示词模板零成本试水;LlamaFactory提供一站式微调工具。数据显示,80%企业AI
2025-05-27 17:56:01
455
原创 颠覆传统!用自然语言做梯度优化多智能体系统
《文本梯度:多智能体系统优化的新范式》摘要 近期《自然》期刊提出TextGrad框架,开创性地利用自然语言反馈(文本梯度)优化多智能体AI系统。该研究突破传统反向传播依赖数值梯度的限制,通过LLM生成的文本改进建议(如"总结可通过...改进")实现黑箱系统的自动优化。实验表明,TextGrad在代码优化(LeetCode正确率提升10%)、复杂问答(MMLU物理子集提升3.9%)及医疗放疗计划优化等场景均显著提升性能。其PyTorch兼容设计使系统能像训练神经网络般优化多模块协作,为AI
2025-05-27 15:19:25
669
原创 一句话生成思维导图:大模型的惊人能力
文章摘要:大模型可通过简单提示词直接生成各类Mermaid图表(思维导图、架构图、泳道图等),无需人工修改。其工作原理是:输入文本→AI生成Mermaid代码→代码渲染成图。Mermaid作为基于JavaScript的图表工具,能以极简代码创建复杂图表。相比传统制图软件(如Xmind)需要长期学习,现在只需向AI描述需求即可快速生成专业图表。目前大模型的编程能力越强,生成的图表完成度和美观度越高。该技术大幅降低了制作专业图表的技术门槛和耗时。
2025-05-27 14:07:43
767
原创 适合零基础入门大模型微调教程
很多AI新手在接触大模型时都会被"微调"二字劝退。想实战没有环境?自己根本玩不转?本文带你用一杯咖啡的时间,了解大模型的微调技术,无需高端显卡,用魔塔社区免费资源即可实战体验,在实战中理解微调技术,感受薅羊毛的快乐!根据具体需求(如训练速度、内存占用、灵活性等)选择合适的微调方案,本次以LoRA为例进行微调测试。常见的微调技术如下:1. 全参数微调(Full Fine-Tuning)• 技术特点:更新所有模型参数,最大化任务适配• 适用场景:
2025-05-26 20:02:39
899
原创 超简单教程:unsloth将Qwen3大模型微调成了一个脑筋急转弯专家
本文介绍了使用AutoDL云主机和Unsloth框架对Qwen3-4B大模型进行微调的完整流程。主要内容包括:1)环境准备(创建conda环境、安装CUDA);2)下载脑筋急转弯数据集;3)安装Unsloth并加载Qwen3模型;4)微调前测试;5)配置LoRA参数进行模型微调;6)保存微调后的模型并进行推理测试。整个过程详细说明了从环境搭建到模型训练、测试的每个步骤,适合新手学习大模型微调实践。
2025-05-26 18:12:04
687
原创 AI智能体工作流:打造一个从吃饭到旅行的全能助手
MCPServer是基于MCP协议构建的轻量级服务程序,旨在实现大型语言模型与外部资源的安全高效连接。本文介绍了MCPServer的客户端-服务器架构及其核心功能,包括资源暴露、会话管理、安全保护等。通过魔搭社区MCP广场,作者演示了如何配置高德地图等4个MCP-Server,并利用Dify平台搭建集吃饭、学习、看新闻、出行规划于一体的AI智能体工作流。虽然首次调用可能出现超时问题,但该方案展示了MCPServer在多场景应用中的潜力。目前MCPServer发展迅速,已获得多家互联网厂商支持。
2025-05-26 15:07:12
873
原创 RAG在开发中常见的12个痛点及解决方案
本文探讨了构建检索增强生成(RAG)系统时面临的12个关键难题及其解决方案。在Barnett论文提出的7个挑战基础上,作者补充了5个常见问题,包括数据扩展性、结构化数据查询、复杂PDF处理、备用模型和安全问题。针对内容缺失、文档遗漏等问题,提出了数据清洗、参数优化、提示工程等技术方案;针对输出格式、细节不足等问题,介绍了输出解析、Pydantic程序等工具;同时分享了并行处理、查询转换、模型路由等性能优化策略,以及LlamaGuard等安全防护措施。这些系统性的解决方案为开发高效可靠的RAG应用提供了实践指
2025-05-25 20:03:35
558
原创 一文搞懂 Agent、Function Calling、MCP、A2A
本文系统介绍了大语言模型应用中的关键技术概念:Agent(智能体)是基于LLM结合外部工具完成复杂任务的实体;FunctionCalling是让LLM生成结构化指令调用外部函数的机制;MCP是标准化模型与工具连接的协议;A2A则实现了不同Agent间的协作。文章通过天气查询示例展示了Agent工作流程,分析了各项技术的必要性及相互关系:FunctionCalling/MCP解决工具调用问题,而A2A实现多Agent协同。这些技术共同构成了LLM应用的完整知识体系,使AI系统能更高效地处理复杂任务。
2025-05-25 14:41:23
934
原创 RAG进化史:从朴素到模块化的智能革命
RAG技术:让AI拥有实时"外挂大脑" RAG(检索增强生成)技术解决了大语言模型知识更新慢的问题,其发展经历了三个阶段:1)朴素RAG通过索引、检索、生成三个基础步骤实现信息查询;2)高级RAG优化检索过程,引入预检索和后检索策略提高准确性;3)模块化RAG采用可定制组件,支持多种检索模式和任务适配。这项技术让AI能实时获取外部信息,生成更准确的回答,未来有望与知识图谱、多模态等技术结合,进一步拓展应用场景。
2025-05-25 10:56:11
1136
原创 RAG的5步流程和12个优化策略提升AI问答能力
RAG(检索增强生成)技术通过结合外部知识检索与语言模型生成能力,有效解决了传统生成式AI的幻觉、知识更新滞后等问题。文章系统介绍了RAG的5个核心环节:知识文档准备、嵌入模型转换、向量数据库存储、查询检索和答案生成,并详细阐述了12项优化策略,包括文档分块处理、多级索引、查询转换、重排模型等关键技术。该技术已广泛应用于企业知识问答系统,通过动态结合最新外部知识,显著提升了生成结果的准确性和时效性。
2025-05-24 17:00:13
747
原创 DeepSeek爆火:国产AI弯道超车全攻略
国产AI大模型DeepSeek凭借技术创新引发全球关注,上线7天用户破亿,以"高性能平价"路线实现弯道超车。其核心优势在于推理型AI能力,能结合最新信息进行分析判断。文章分享了4个实用技巧:明确四步提问法、简化提示词、避免过度示范、直接表达目标需求。DeepSeek在法律、职场等领域展现强大应用价值,如自动生成合同、智能培训设计等。文末推荐了AI学习资源社区,强调AI是提升效率的重要工具。
2025-05-24 13:54:52
624
原创 一文剖析基于 MCP 的 AI 应用技术架构全景视图
本文全面介绍了基于MCP(Model Context Protocol)的AI应用技术架构,从基础设施层到应用层,详细阐述了各层次的关键技术和协同工作机制。基础设施层包括GPU、CPU、RAM、HDD和Network等硬件支持;云原生层通过Docker和K8S实现弹性伸缩;模型层涵盖大语言模型、视觉-语言模型等;应用技术层涉及MCP协议、Agent技术、RAG技术等;应用架构层解决高可用、高性能和弹性伸缩问题;应用层则分为增量和存量应用。通过这一全景视图,揭示了MCP如何推动AI技术在产业中的落地应用。
2025-05-24 09:10:48
787
原创 MCP技术革新:打造高效企业RAG系统
在企业数字化转型中,如何高效管理和利用内部知识资产成为关键挑战。传统检索增强生成(RAG)系统存在检索质量不佳、实时更新困难等问题。本文提出基于模型上下文协议(MCP)的高性能企业RAG系统,通过标准化协议将知识检索服务解耦为独立模块,显著提升系统灵活性和维护效率。MCP-RAG系统支持智能检索、知识自动化处理、灵活扩展和易于部署,帮助企业快速构建智能知识库应用。通过实战案例,详细介绍了系统设计、实现和优化策略,展示了其在提升知识检索准确率和减少维护工作量方面的显著效果。未来,随着大模型技术的进步,MCP-
2025-05-23 17:00:21
1154
原创 合同审查提示词模板,解锁大模型真正实力
人类之间的沟通大量基于长期已有认知,即便表达存在模糊性也仍然可以顺畅理解对方意思。特别在网络时代,大量图像的输入以及如网络用语、“梗”的使用导致对语言表达的偏废,也就导致缺乏主动寻求意义的动力。因此,在人工智能时代,如何表达精准成为人类需要学习的与人工智能对话的最基本要领。将人工智能大语言模型用于合同审查,可能是法律人利用人工智能的主要方式之一,但是由于表达的不精准和模糊,往往会使大语言模型的输出结果让人觉得“写的不好”“没法用”甚至有些“智障”。所以,一个好的提示词工程,会让人工智能的能力提升数百倍,
2025-05-23 13:38:28
1412
原创 5 种 AI 知识库搭建方案全解析
今天一口气给大家介绍五种不同的 AI 知识库方案。我会通俗易懂地介绍,不同 AI 知识库方案的主要特点和适用场景。无论你是个人用户,还是企业用户,相信你一定能找到适合自己的 AI 知识库方案。如果你看完还是不确定选哪个,欢迎留言沟通。前言:AI知识库,有哪些功能?对你有什么用?说方案之前,先说一下 AI 知识库有什么用,举两个例子。个人角度——我做短视频时,用 AI 帮忙写文案,但 AI 写的内容,总是不能让我满意。当我整理了个人写的文案,结合网络热门视频的文案,建立了知识库,AI
2025-05-23 09:01:08
694
原创 Manus VS扣子空间相比,到底谁更胜一筹?
还记得三月初的时候 Manus 刚刚发布轰动全球,产生了一码难求的局面,甚至在某鱼上一个激活码被炒到天价,接近六位数。短短两个月过去了,很多公司也都跟进了这方面,比如 Coze 平台推出的扣子空间,上来就让大家免费使用。Manus 应该也是反应过来了,再不开放用户就都要丢失了。不过目前国内版的 Manus 还是在开发中,国际版的 Manus 已经免费开放给所有用户使用。
2025-05-22 16:27:41
687
原创 18个作品吸粉19.5万,Coze一键制作爆款短视频《假如书籍会说话》
这篇文章详细拆解了如何制作爆款书籍解读短视频的流程。通过两个角色(主持人和拟人化的书籍)对话的形式,结合书籍的核心内容,生成吸引观众的对话文案。具体步骤包括:输入书籍信息,使用AI模型生成对话文案,提取关键词,生成音频和背景图,整合数据,并通过剪映等工具进行视频合成。最终生成的视频可以通过二次编辑和导出,形成高质量的书籍解读短视频。这种形式不仅提升了观众的参与感,还能有效传播书籍的核心思想。
2025-05-22 13:31:01
1047
原创 教你用DeepSeek零代码生成交互式图表,轻松搞定Excel和PPT
摘要:本文介绍了如何利用DeepSeek工具生成交互式数据分析图表,并将其嵌入Excel和PPT中,以提升演示效果。传统AI生成图表的方法通常只能生成静态图像,缺乏交互性。而通过DeepSeek,用户可以生成代码模板,结合数据生成可交互的图表。具体步骤包括选择图表模板、使用DeepSeek生成代码,并将代码嵌入Excel或PPT中。这种方法不仅提高了图表的可修改性和稳定性,还使得非技术人员也能轻松操作,极大地提升了工作效率和演示体验。
2025-05-22 11:01:16
1252
原创 一文搞懂:提示词和提示词工程,超详细
那么提示词和提示词工程到底有什么区别呢?为什么提示词工程师的薪水会非常的高呢?今天一文帮你搞懂。一、提示词与提示词工程的起源与定义提示词(Prompt)的概念最早伴随大语言模型(LLM)的兴起而普及。2020年后,随着GPT-3等模型的突破性进展,提示词工程(Prompt Engineering)逐渐成为一门系统性学科。特别是吴恩达在YouTube上分享的提示词工程一系列教学视频后,更把让提示词工程一次在AI专业领域被熟知
2025-05-21 18:25:31
1876
原创 大模型训练全攻略:从参数设置到模型优化
本文详细介绍了大模型项目研发中模型训练的关键步骤,包括学习率设置、数据加载、前向传播、损失计算、反向传播以及验证与调整。学习率的选择和动态调整对模型训练至关重要,DataLoader则能高效加载数据,提升训练速度。前向传播和反向传播是模型学习的核心,通过优化器进行参数更新。验证集的使用有助于监控模型性能,避免过拟合和欠拟合。文章通过代码示例和常见问题解决方案,帮助读者逐步掌握模型训练的全流程,无论是初学者还是有经验的从业者,都能从中获得宝贵的知识。
2025-05-21 13:30:23
1524
原创 揭秘AI模型训练:从“玄学炼丹”到精密工程
模型训练(Training)是AI领域的核心过程,通过数据、算法和优化技术,使模型从随机初始化逐步学习到精准预测。训练过程包括数据预处理、模型架构搭建、参数调优和迭代验证。数据是模型的学习材料,参数是模型的“大脑”,损失函数衡量预测误差,优化器调整参数以减少误差,正则化防止过拟合。训练中可能遇到Loss不下降、过拟合、训练速度慢等问题,需通过数据清洗、模型调整、学习率优化等手段解决。技术实现上,PyTorch等框架通过定义模型结构、配置损失函数与优化器、反向传播更新参数等步骤完成训练。最终,模型通过验证集和
2025-05-21 09:21:54
468
原创 解密神经网络:从原理到实战应用
神经网络算法是一种受生物神经系统启发的计算模型,广泛应用于模式识别、分类和回归等任务。其基本结构由输入层、隐藏层和输出层组成,每层包含多个神经元,通过权重连接进行信息传递。神经元通过加权求和和激活函数处理输入信号,生成输出。常见的激活函数包括Sigmoid、ReLU、Tanh和Softmax,分别适用于不同的任务。神经网络的训练过程包括前向传播、损失计算、反向传播和参数更新,通过迭代优化权重和偏置,最小化损失函数,提升模型预测准确性。示例代码展示了如何使用Python实现一个简单的多层感知机(MLP)进行手
2025-05-20 19:51:01
1427
原创 入门神经网络:从零到深度学习的简明指南
神经网络是机器学习和深度学习的核心技术,通过模拟人脑神经元的工作机制来实现人工智能。本文从神经元的基本概念出发,逐步介绍了单层神经网络、两层神经网络以及多层神经网络的结构、训练方法和应用效果。神经网络通过矩阵运算和激活函数模拟复杂的非线性关系,具备强大的函数拟合能力。随着计算性能的提升、数据量的增加以及训练方法的优化,神经网络在图像识别、语音识别等领域取得了显著成果。然而,神经网络的发展并非一帆风顺,历史上经历了多次起落。未来,量子计算可能为神经网络带来新的突破,推动人工智能的进一步发展。本文旨在帮助初学者
2025-05-20 19:16:33
1197
原创 小白必看:一文搞懂RAG、LangChain、Agent之间的关系
在处理企业合规任务时,如判断公司是否符合ISO-27001第九条,可以利用LangChain框架中的RAG技术和Agent角色来构建一个高效的解决方案。RAG技术通过检索增强生成,确保模型能够访问到最新的企业制度和行业标准,从而提供准确的合规信息。LangChain则负责流程的编排,确保从信息检索到结果输出的每一步都按照既定流程执行。而Agent作为高级分析师,能够理解任务目标,自主规划并执行任务,最终生成合规性评估结果。这三者的结合,不仅提高了信息检索的准确性,还增强了任务执行的流程感和决策的自主性,使得
2025-05-20 09:16:23
892
原创 从 RAG 到 Agentic RAG:反思、规划与多代理协作如何重塑智能系统
代理式检索增强生成(AgenticRAG)通过在RAG管道中嵌入自主代理,代表了人工智能领域的重大飞跃。该技术结合了大型语言模型(LLMs)和检索机制,生成上下文相关且准确的响应。AgenticRAG通过集成自主AI代理,克服了传统RAG系统在处理动态、多步推理任务、适应性和复杂工作流编排方面的不足。其核心代理模式包括反思、规划、工具使用和多代理协作,使其能够动态适应任务特定需求,并在多领域知识检索、实时文档工作流和可扩展、自适应且符合伦理的AI系统方面表现出色。AgenticRAG系统广泛应用于医疗、教育
2025-05-19 22:14:15
994
原创 Transformer模型之词向量:让计算机读懂人类语言的魔法
词嵌入技术是让计算机理解人类语言的关键,它将词语转化为数学向量,使计算机能够捕捉词语的语义和关系。词嵌入分为静态和动态两种:静态词向量如Word2Vec、GloVe和FastText,是预训练的固定向量,适用于多种任务但无法捕捉上下文差异;动态词向量如ELMo、BERT和GPT,能根据上下文动态调整,捕捉深层语义和任务适配性。词嵌入通过词表将单词映射为索引,并在Transformer中结合位置编码实现上下文感知。其应用广泛,包括文本分类、相似度计算和生成任务。随着大模型的发展,词嵌入技术正朝着更高效、更灵活
2025-05-19 20:38:06
742
原创 手把手教你搭建n8n+mcp+deepseek工作流
本文详细介绍了如何搭建n8n+mcp+deepseek的工作流,分为四个主要步骤:首先,通过Docker部署n8n,推荐使用官方镜像或国内镜像;其次,激活n8n账号并完成注册;接着,安装mcp工具节点;最后,正式搭建工作流,包括创建workflow、添加Onchatmessage和AIAgent组件、配置deepseek模型和MCPClientTool组件。通过这一流程,用户可以实现在n8n平台上调用mcp工具进行智能问答,最终通过测试验证工作流的有效性。
2025-05-19 11:21:42
1323
原创 深度解析:切片实现与策略模式的应用
本文介绍了切片实现的策略模式,通过parser_id参数选择不同的切片方法,并在FACTORY中映射到对应的处理器。每个处理器都有一个统一的chunk方法,用于执行具体的分片逻辑。文章详细拆解了多种文件类型(如PDF、DOCX、音频、图片等)的处理流程,并指出不同处理器的侧重点,如manual注重文档结构化,naive通过视觉模型增强图片处理。此外,文章还提到了一些特殊场景的处理,如法律文本的垂直合并、简历的结构化处理等。最后,作者指出专用处理器的局限性,并建议通过外部文档结构化来简化分片策略。
2025-05-18 20:16:51
763
原创 机器学习到底是什么
机器学习(Machine Learning)本质上就是让计算机自己在数据中学习规律,并根据所得到的规律对未来数据进行预测。机器学习包括如聚类、分类、决策树、贝叶斯、神经网络、深度学习(Deep Learning)等算法。机器学习的基本思路是模仿人类学习行为的过程,如我们在现实中的新问题一般是通过经验归纳,总结规律,从而预测未来的过程。机器学习的基本过程如下:
2025-05-17 21:43:19
767
原创 KAG框架:知识增强生成技术革新
KAG框架(Knowledge Augmented Generation)旨在提升检索增强生成(RAG)技术在多跳任务和跨段落任务中的性能,特别是在法律、医学和科学等需要分析推理的专业领域。RAG技术通过外部检索系统提升大语言模型的时效性并减少模型幻觉,但在生成文本的连贯性和逻辑性方面仍有不足。KAG框架通过整合知识图谱和RAG技术,提出KAG-Builder、KAG-Solver和KAG-Model三大核心模块,分别负责构建离线索引、混合推理引擎和优化语言模型。KAG-Builder通过LLMFriSPG
2025-05-16 18:54:43
1084
原创 大模型:Function Calling 到 MCP 的技术演进全知道
对大模型而言,不能满足人们需求关键问题有二:一是大模型的知识更新问题:大模型存在知识更新问题,大模型在训练完成后,其知识也已固化无法更新。因此通过提示工程及RAG技术(本质上也是提示工程的一种)把新知识输入到大模型中。但这还远远不够,比如获取实时信息(例如天气、数据检索等)、执行相关任务(例如发送邮件、自动化任务等),因此又提出了Function Calling技术,通过程序调用的方式让大模型自动获取外部的知识,并关联进一步的动作,在此过程中又遇到了第二个问题:
2025-05-16 18:28:43
1045
原创 一文读懂 AI 大模型:从基础概念到行业应用全解析
AI大模型正在引领人类历史上最快的技术革命,其核心是通过海量数据预训练的通用智能体,具备千亿级参数、涌现能力和多模态处理等特征。自2017年Transformer架构诞生以来,大模型技术不断突破,如GPT-3的上下文学习能力、GPT-4V的多模态处理能力以及RAG技术的成熟。大模型不仅是工具,更是新型生产力基础设施,正在改变各行各业的工作方式。从智能办公到医疗咨询,大模型通过文本理解、逻辑推理和多模态融合等技术,提升了效率和准确性。未来,大模型将继续推动技术创新,成为各行业不可或缺的智能助手。
2025-05-16 17:08:44
979
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人