多元函数的偏导数:从概念到计算全面解析

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


引言:从单变量到多元的导数概念延伸

在单变量微积分中,导数描述了函数在某点的瞬时变化率。当我们进入多元函数的世界时,偏导数成为研究函数沿各个坐标轴方向变化的重要工具。本文将系统介绍偏导数的定义、几何意义、计算方法,并通过具体示例展示偏导数的存在性判断和高阶导数的计算。

一、偏导数的基本定义

1. 形式化定义

对于二元函数 z = f ( x , y ) z = f(x,y) z=f(x,y) 在点 ( a , b ) (a,b) (a,b) 处关于 x x x 的偏导数定义为:

f x ( a , b ) = lim ⁡ h → 0 f ( a + h , b ) − f ( a , b ) h f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h} fx(a,b)=h0limhf(a+h,b)f(a,b)

类似地,关于 y y y 的偏导数为:

f y ( a , b ) = lim ⁡ h → 0 f ( a , b + h ) − f ( a , b ) h f_y(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h} fy(a,b)=h0limhf(a,b+h)f(a,b)

2. 与单变量导数的关系

  • 相同点:都是通过极限定义的局部变化率
  • 不同点
    • 单变量导数:只有一个变化方向
    • 偏导数:固定其他变量,只考虑一个方向的变化

示例1:函数 f ( x , y ) = x 2 + 3 x y + y 2 f(x,y) = x^2 + 3xy + y^2 f(x,y)=x2+3xy+y2 在点 (1,2) 处的偏导数:

  • f x = 2 x + 3 y ⇒ f x ( 1 , 2 ) = 8 f_x = 2x + 3y \Rightarrow f_x(1,2) = 8 fx=2x+3yfx(1,2)=8
  • f y = 3 x + 2 y ⇒ f y ( 1 , 2 ) = 7 f_y = 3x + 2y \Rightarrow f_y(1,2) = 7 fy=3x+2yfy(1,2)=7

二、偏导数的几何意义

1. 几何解释

  • f x ( a , b ) f_x(a,b) fx(a,b):表示曲面 z = f ( x , y ) z=f(x,y) z=f(x,y) 与平面 y = b y=b y=b 的交线在 x = a x=a x=a 处的切线斜率
  • f y ( a , b ) f_y(a,b) fy(a,b):表示曲面 z = f ( x , y ) z=f(x,y) z=f(x,y) 与平面 x = a x=a x=a 的交线在 y = b y=b y=b 处的切线斜率

2. 可视化理解

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 定义函数
def f(x,y):
    return x**2 + 3*x*y + y**2

# 创建网格
x = np.linspace(-3,3,30)
y = np.linspace(-3,3,30)
X,Y = np.meshgrid(x,y)
Z = f(X,Y)

# 绘制曲面
fig = plt.figure(figsize=(12,6))
ax1 = fig.add_subplot(121, projection='3d')
ax1.plot_surface(X,Y,Z, alpha=0.7)

# 绘制切线
x_tangent = np.linspace(0,2,10)
y_fixed = 2
z_tangent_x = 8*(x_tangent-1) + f(1,2)  # x方向切线

ax1.plot(x_tangent, [y_fixed]*len(x_tangent), z_tangent_x, 'r', linewidth=3)

plt.title('偏导数的几何意义')
plt.tight_layout()
plt.show()

三、偏导数的计算方法

1. 基本计算规则

计算 f ( x , y ) f(x,y) f(x,y) 关于 x x x 的偏导数时:

  1. y y y 视为常数
  2. x x x 使用常规导数规则求导

2. 典型示例

示例2:计算 f ( x , y ) = x 3 y + e x y f(x,y) = x^3y + e^{xy} f(x,y)=x3y+exy 的偏导数

  • f x = 3 x 2 y + y e x y f_x = 3x^2y + ye^{xy} fx=3x2y+yexy
  • f y = x 3 + x e x y f_y = x^3 + xe^{xy} fy=x3+xexy

示例3:分段函数的偏导数
考虑函数:
f ( x , y ) = { x y x 2 + y 2 ( x , y ) ≠ ( 0 , 0 ) 0 ( x , y ) = ( 0 , 0 ) f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & (x,y)\neq(0,0) \\ 0 & (x,y)=(0,0) \end{cases} f(x,y)={x2+y2xy0(x,y)=(0,0)(x,y)=(0,0)

在 (0,0) 点:

  • f x ( 0 , 0 ) = lim ⁡ h → 0 f ( h , 0 ) − f ( 0 , 0 ) h = 0 f_x(0,0) = \lim_{h\to0}\frac{f(h,0)-f(0,0)}{h} = 0 fx(0,0)=limh0hf(h,0)f(0,0)=0
  • f y ( 0 , 0 ) = lim ⁡ h → 0 f ( 0 , h ) − f ( 0 , 0 ) h = 0 f_y(0,0) = \lim_{h\to0}\frac{f(0,h)-f(0,0)}{h} = 0 fy(0,0)=limh0hf(0,h)f(0,0)=0

四、偏导数的存在性

1. 存在但函数不连续的例子

示例4:函数 f ( x , y ) = { 1 x y = 0 0 x y ≠ 0 f(x,y) = \begin{cases}1 & xy=0\\ 0 & xy\neq0\end{cases} f(x,y)={10xy=0xy=0

在 (0,0) 点:

  • f x ( 0 , 0 ) = 0 f_x(0,0) = 0 fx(0,0)=0
  • f y ( 0 , 0 ) = 0 f_y(0,0) = 0 fy(0,0)=0

但函数在 (0,0) 不连续(沿 y = x y=x y=x 逼近时极限为 0,但沿坐标轴逼近时为 1)

2. 不存在的例子

示例5:函数 f ( x , y ) = ∣ x ∣ + ∣ y ∣ f(x,y) = |x| + |y| f(x,y)=x+y 在 (0,0) 点

x x x 偏导数不存在,因为:
lim ⁡ h → 0 + ∣ h ∣ h = 1 ≠ lim ⁡ h → 0 − ∣ h ∣ h = − 1 \lim_{h\to0^+}\frac{|h|}{h} = 1 \neq \lim_{h\to0^-}\frac{|h|}{h} = -1 h0+limhh=1=h0limhh=1

五、高阶偏导数

1. 定义与表示

二阶偏导数有四种可能:

  1. f x x = ∂ 2 f ∂ x 2 f_{xx} = \frac{\partial^2 f}{\partial x^2} fxx=x22f
  2. f x y = ∂ 2 f ∂ y ∂ x f_{xy} = \frac{\partial^2 f}{\partial y \partial x} fxy=yx2f
  3. f y x = ∂ 2 f ∂ x ∂ y f_{yx} = \frac{\partial^2 f}{\partial x \partial y} fyx=xy2f
  4. f y y = ∂ 2 f ∂ y 2 f_{yy} = \frac{\partial^2 f}{\partial y^2} fyy=y22f

2. 混合偏导数定理

f x y f_{xy} fxy f y x f_{yx} fyx 在一点附近连续,则在该点有:
f x y = f y x f_{xy} = f_{yx} fxy=fyx

示例6:计算 f ( x , y ) = x 3 y 2 + sin ⁡ ( x y ) f(x,y) = x^3y^2 + \sin(xy) f(x,y)=x3y2+sin(xy) 的二阶偏导数

  • 一阶偏导:

    • f x = 3 x 2 y 2 + y cos ⁡ ( x y ) f_x = 3x^2y^2 + y\cos(xy) fx=3x2y2+ycos(xy)
    • f y = 2 x 3 y + x cos ⁡ ( x y ) f_y = 2x^3y + x\cos(xy) fy=2x3y+xcos(xy)
  • 二阶偏导:

    • f x x = 6 x y 2 − y 2 sin ⁡ ( x y ) f_{xx} = 6xy^2 - y^2\sin(xy) fxx=6xy2y2sin(xy)
    • f x y = 6 x 2 y + cos ⁡ ( x y ) − x y sin ⁡ ( x y ) = f y x f_{xy} = 6x^2y + \cos(xy) - xy\sin(xy) = f_{yx} fxy=6x2y+cos(xy)xysin(xy)=fyx
    • f y y = 2 x 3 − x 2 sin ⁡ ( x y ) f_{yy} = 2x^3 - x^2\sin(xy) fyy=2x3x2sin(xy)

六、应用与总结

1. 主要应用领域

  • 优化问题中的梯度计算
  • 微分方程的建立与求解
  • 经济学中的边际分析
  • 物理学中的场论研究

2. 内容总结表

概念定义关键点
一阶偏导 lim ⁡ h → 0 f ( a + h , b ) − f ( a , b ) h \lim_{h\to0}\frac{f(a+h,b)-f(a,b)}{h} limh0hf(a+h,b)f(a,b)固定其他变量求导
几何意义坐标平面截线的切线斜率反映单方向变化率
高阶偏导偏导数的偏导数混合偏导可能相等
存在条件单方向极限存在不保证函数连续

3. 学习建议

  1. 从几何图形理解偏导数的意义
  2. 通过大量练习掌握计算技巧
  3. 注意区分偏导数存在与函数连续的关系
  4. 研究高阶偏导数的对称性质

理解偏导数是掌握多元微积分的关键一步,它为后续学习方向导数、梯度和多元函数极值等概念奠定了基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值