提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
引言:从单变量到多元的导数概念延伸
在单变量微积分中,导数描述了函数在某点的瞬时变化率。当我们进入多元函数的世界时,偏导数成为研究函数沿各个坐标轴方向变化的重要工具。本文将系统介绍偏导数的定义、几何意义、计算方法,并通过具体示例展示偏导数的存在性判断和高阶导数的计算。
一、偏导数的基本定义
1. 形式化定义
对于二元函数 z = f ( x , y ) z = f(x,y) z=f(x,y) 在点 ( a , b ) (a,b) (a,b) 处关于 x x x 的偏导数定义为:
f x ( a , b ) = lim h → 0 f ( a + h , b ) − f ( a , b ) h f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h} fx(a,b)=h→0limhf(a+h,b)−f(a,b)
类似地,关于 y y y 的偏导数为:
f y ( a , b ) = lim h → 0 f ( a , b + h ) − f ( a , b ) h f_y(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h} fy(a,b)=h→0limhf(a,b+h)−f(a,b)
2. 与单变量导数的关系
- 相同点:都是通过极限定义的局部变化率
- 不同点:
- 单变量导数:只有一个变化方向
- 偏导数:固定其他变量,只考虑一个方向的变化
示例1:函数 f ( x , y ) = x 2 + 3 x y + y 2 f(x,y) = x^2 + 3xy + y^2 f(x,y)=x2+3xy+y2 在点 (1,2) 处的偏导数:
- f x = 2 x + 3 y ⇒ f x ( 1 , 2 ) = 8 f_x = 2x + 3y \Rightarrow f_x(1,2) = 8 fx=2x+3y⇒fx(1,2)=8
- f y = 3 x + 2 y ⇒ f y ( 1 , 2 ) = 7 f_y = 3x + 2y \Rightarrow f_y(1,2) = 7 fy=3x+2y⇒fy(1,2)=7
二、偏导数的几何意义
1. 几何解释
- f x ( a , b ) f_x(a,b) fx(a,b):表示曲面 z = f ( x , y ) z=f(x,y) z=f(x,y) 与平面 y = b y=b y=b 的交线在 x = a x=a x=a 处的切线斜率
- f y ( a , b ) f_y(a,b) fy(a,b):表示曲面 z = f ( x , y ) z=f(x,y) z=f(x,y) 与平面 x = a x=a x=a 的交线在 y = b y=b y=b 处的切线斜率
2. 可视化理解
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 定义函数
def f(x,y):
return x**2 + 3*x*y + y**2
# 创建网格
x = np.linspace(-3,3,30)
y = np.linspace(-3,3,30)
X,Y = np.meshgrid(x,y)
Z = f(X,Y)
# 绘制曲面
fig = plt.figure(figsize=(12,6))
ax1 = fig.add_subplot(121, projection='3d')
ax1.plot_surface(X,Y,Z, alpha=0.7)
# 绘制切线
x_tangent = np.linspace(0,2,10)
y_fixed = 2
z_tangent_x = 8*(x_tangent-1) + f(1,2) # x方向切线
ax1.plot(x_tangent, [y_fixed]*len(x_tangent), z_tangent_x, 'r', linewidth=3)
plt.title('偏导数的几何意义')
plt.tight_layout()
plt.show()
三、偏导数的计算方法
1. 基本计算规则
计算 f ( x , y ) f(x,y) f(x,y) 关于 x x x 的偏导数时:
- 将 y y y 视为常数
- 对 x x x 使用常规导数规则求导
2. 典型示例
示例2:计算 f ( x , y ) = x 3 y + e x y f(x,y) = x^3y + e^{xy} f(x,y)=x3y+exy 的偏导数
- f x = 3 x 2 y + y e x y f_x = 3x^2y + ye^{xy} fx=3x2y+yexy
- f y = x 3 + x e x y f_y = x^3 + xe^{xy} fy=x3+xexy
示例3:分段函数的偏导数
考虑函数:
f
(
x
,
y
)
=
{
x
y
x
2
+
y
2
(
x
,
y
)
≠
(
0
,
0
)
0
(
x
,
y
)
=
(
0
,
0
)
f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & (x,y)\neq(0,0) \\ 0 & (x,y)=(0,0) \end{cases}
f(x,y)={x2+y2xy0(x,y)=(0,0)(x,y)=(0,0)
在 (0,0) 点:
- f x ( 0 , 0 ) = lim h → 0 f ( h , 0 ) − f ( 0 , 0 ) h = 0 f_x(0,0) = \lim_{h\to0}\frac{f(h,0)-f(0,0)}{h} = 0 fx(0,0)=limh→0hf(h,0)−f(0,0)=0
- f y ( 0 , 0 ) = lim h → 0 f ( 0 , h ) − f ( 0 , 0 ) h = 0 f_y(0,0) = \lim_{h\to0}\frac{f(0,h)-f(0,0)}{h} = 0 fy(0,0)=limh→0hf(0,h)−f(0,0)=0
四、偏导数的存在性
1. 存在但函数不连续的例子
示例4:函数 f ( x , y ) = { 1 x y = 0 0 x y ≠ 0 f(x,y) = \begin{cases}1 & xy=0\\ 0 & xy\neq0\end{cases} f(x,y)={10xy=0xy=0
在 (0,0) 点:
- f x ( 0 , 0 ) = 0 f_x(0,0) = 0 fx(0,0)=0
- f y ( 0 , 0 ) = 0 f_y(0,0) = 0 fy(0,0)=0
但函数在 (0,0) 不连续(沿 y = x y=x y=x 逼近时极限为 0,但沿坐标轴逼近时为 1)
2. 不存在的例子
示例5:函数 f ( x , y ) = ∣ x ∣ + ∣ y ∣ f(x,y) = |x| + |y| f(x,y)=∣x∣+∣y∣ 在 (0,0) 点
x
x
x 偏导数不存在,因为:
lim
h
→
0
+
∣
h
∣
h
=
1
≠
lim
h
→
0
−
∣
h
∣
h
=
−
1
\lim_{h\to0^+}\frac{|h|}{h} = 1 \neq \lim_{h\to0^-}\frac{|h|}{h} = -1
h→0+limh∣h∣=1=h→0−limh∣h∣=−1
五、高阶偏导数
1. 定义与表示
二阶偏导数有四种可能:
- f x x = ∂ 2 f ∂ x 2 f_{xx} = \frac{\partial^2 f}{\partial x^2} fxx=∂x2∂2f
- f x y = ∂ 2 f ∂ y ∂ x f_{xy} = \frac{\partial^2 f}{\partial y \partial x} fxy=∂y∂x∂2f
- f y x = ∂ 2 f ∂ x ∂ y f_{yx} = \frac{\partial^2 f}{\partial x \partial y} fyx=∂x∂y∂2f
- f y y = ∂ 2 f ∂ y 2 f_{yy} = \frac{\partial^2 f}{\partial y^2} fyy=∂y2∂2f
2. 混合偏导数定理
若
f
x
y
f_{xy}
fxy 和
f
y
x
f_{yx}
fyx 在一点附近连续,则在该点有:
f
x
y
=
f
y
x
f_{xy} = f_{yx}
fxy=fyx
示例6:计算 f ( x , y ) = x 3 y 2 + sin ( x y ) f(x,y) = x^3y^2 + \sin(xy) f(x,y)=x3y2+sin(xy) 的二阶偏导数
-
一阶偏导:
- f x = 3 x 2 y 2 + y cos ( x y ) f_x = 3x^2y^2 + y\cos(xy) fx=3x2y2+ycos(xy)
- f y = 2 x 3 y + x cos ( x y ) f_y = 2x^3y + x\cos(xy) fy=2x3y+xcos(xy)
-
二阶偏导:
- f x x = 6 x y 2 − y 2 sin ( x y ) f_{xx} = 6xy^2 - y^2\sin(xy) fxx=6xy2−y2sin(xy)
- f x y = 6 x 2 y + cos ( x y ) − x y sin ( x y ) = f y x f_{xy} = 6x^2y + \cos(xy) - xy\sin(xy) = f_{yx} fxy=6x2y+cos(xy)−xysin(xy)=fyx
- f y y = 2 x 3 − x 2 sin ( x y ) f_{yy} = 2x^3 - x^2\sin(xy) fyy=2x3−x2sin(xy)
六、应用与总结
1. 主要应用领域
- 优化问题中的梯度计算
- 微分方程的建立与求解
- 经济学中的边际分析
- 物理学中的场论研究
2. 内容总结表
概念 | 定义 | 关键点 |
---|---|---|
一阶偏导 | lim h → 0 f ( a + h , b ) − f ( a , b ) h \lim_{h\to0}\frac{f(a+h,b)-f(a,b)}{h} limh→0hf(a+h,b)−f(a,b) | 固定其他变量求导 |
几何意义 | 坐标平面截线的切线斜率 | 反映单方向变化率 |
高阶偏导 | 偏导数的偏导数 | 混合偏导可能相等 |
存在条件 | 单方向极限存在 | 不保证函数连续 |
3. 学习建议
- 从几何图形理解偏导数的意义
- 通过大量练习掌握计算技巧
- 注意区分偏导数存在与函数连续的关系
- 研究高阶偏导数的对称性质
理解偏导数是掌握多元微积分的关键一步,它为后续学习方向导数、梯度和多元函数极值等概念奠定了基础。