微积分入门:偏导数

本文深入探讨偏导数的概念,包括定义域、连续性、水平曲线和曲面,以及如何求解偏导数。文章还介绍了曲面的切平面、方向导数、梯度和链式法则,讨论了最大最小问题和拉格朗日乘子法。此外,还涉及了隐函数微分和三变量等式的情况,为理解多元微积分提供全面的知识框架。

偏导数

定义域

z=f(x,y)z = f(x, y)z=f(x,y),其定义域是是所有在xy轴的点P=(x,y)的集合

连续性

基本函数的任何有限组合在其域的每个点都是连续的.

如果函数f(x, y)的值可以通过取点(x,y)使其尽量逼近(x0,y0)(x_0, y_0)(x0,y0),能得到f(x,y)使其尽可能接近于f(x0, y0),则称函数f(x, y) 在其定义域中的点(x0,y0)(x_0, y_0)(x0,y0) 处连续。

水平曲线

  • 等值线图
  • 等高线

水平曲面

等温面、等势面

定义

函数z=f(x,y)z = f(x,y)z=f(x,y),有2个自变量,当x变化或者y变化时,z都会变化。每次对一个自变量进行求导,当其他所有自变量为常量,可以得到每一个自变量的相关导数。

z=f(x,y)函数,z = f(x,y)函数,z=f(x,y)函数,z对x求导的定义为:∂z∂x=lim⁡Δx−>0f(x+Δx,y)−f(x,y)Δx\frac{\partial z}{\partial x} = \lim_{\Delta x -> 0}\frac{f(x+\Delta x, y) - f(x,y)}{\Delta x}xz=limΔx>0Δxf(x+Δx,y)f(x,y),当前极限存在的话,称作z关于x的偏导数,读作”偏z,偏x“。

z对x求导,最常用的偏导数表示形式:

  • ∂z∂x\frac{\partial z}{\partial x}xz
  • zxz_xzx
  • ∂f∂x\frac{\partial f}{\partial x}xf
  • fxf_xfx
  • fx(x,y)f_x(x,y)fx(x,y)

z对y求导,标准表示为:

  • ∂z∂y\frac{\partial z}{\partial y}yz
  • zyz_yzy
  • ∂f∂y\frac{\partial f}{\partial y}yf
  • fyf_yfy
  • fy(x,y)f_y(x,y)fy(x,y)

∂\partial读作”圆背d“,”卷曲d“,强调存在其他自变量,z对y求导定义为:∂z∂y=lim⁡Δy−>0f(x,y+Δy)−f(x,y)Δy\frac{\partial z}{\partial y} = \lim_{\Delta y -> 0}\frac{f(x, y + \Delta y) - f(x,y)}{\Delta y}yz=limΔy>0Δyf(x,y+Δy)f(x,y)

关于x的偏导数在某个点处的值表示:

  • fx(2,1)f_x(2,1)fx(2,1)
  • (∂f∂x)2,1(\frac{\partial f}{\partial x})_{2,1}(xf)2,1

单变量的导数dy/dxdy/dxdy/dx可合理的当做分数,dy、dx,但是偏导数∂z/∂x\partial z/ \partial xz/x不能拆分为分数∂z\partial zz∂x\partial xx

对x的多阶偏导数:

  • ∂∂x(∂f∂x)=∂2f∂x2=∂∂xfx=fxx\frac{\partial}{\partial x}(\frac{\partial f}{\partial x}) = \frac{\partial^2f}{\partial x^2} = \frac{\partial}{\partial x}f_x = f_{xx}x(xf)=x22f=xfx=fxx
  • ∂∂x(∂f∂y)=∂2f∂x∂y=∂∂xfy=fyx\frac{\partial}{\partial x}(\frac{\partial f}{\partial y}) = \frac{\partial^2f}{\partial x \partial y} = \frac{\partial}{\partial x}f_y = f_{yx}x(yf)=xy2f=xfy=fyx

对y的多阶偏导数:

  • ∂∂y(∂f∂x)=∂2f∂y∂x=∂∂yfx=fxy\frac{\partial}{\partial y}(\frac{\partial f}{\partial x}) = \frac{\partial^2f}{\partial y \partial x} = \frac{\partial}{\partial y}f_x = f_{xy}y(xf)=yx2f=yfx=fxy
  • ∂∂y(∂f∂y)=∂2f∂y2=∂∂yfy=fyy\frac{\partial}{\partial y}(\frac{\partial f}{\partial y}) = \frac{\partial^2f}{\partial y^2} = \frac{\partial}{\partial y}f_y = f_{yy}y(yf)=y22f=yfy=fyy

偏微分顺序:
如果fxyf_{xy}fxy, fyxf_{yx}fyx对(x0,y0x_0,y_0x0,y0)附近的所有点都存在,且在其附近连续,则fxy(x0,y0)−fyx(x0,y0)f_{xy}(x_0, y_0) - f_{yx}(x_0,y_0)fxy(x0,y0)fyx(x0,y0)

三阶导数:

  • ∂3f∂x∂y∂z=∂∂x(∂2f∂y∂z)=(fzy)x=fzyx\frac{\partial^3f}{\partial x \partial y \partial z} = \frac{\partial}{\partial x}(\frac{\partial^2f}{\partial y \partial z}) = (f_{zy})_x = f_{zyx}xyz3f=x(yz2f)=(fzy)x=fzyx

通常,只要有适当的连续性,微分的执行顺序不重要:
fxxyz=fxyxz=fxyzx=fyxzxf_{xxyz} = f_{xyxz} = f_{xyzx} = f_{yxzx}fxxyz=fxyxz=fxyzx=fyxzx

曲面的切平面

曲面的切平面对应于曲线的切线,在几何上,曲面在一点处的切平面是“最接近”该点附近曲面的平面。

切平面定义:
P0P_0P0是曲面z=f(x,y)z = f(x,y)z=f(x,y)上的一个点,假设T是经过P0P_0P0点的平面,P是曲面上的任意一个点。如果当P点沿着曲面逼近P0P_0P0时,线段P0PP_0PP0P和平面T的角度逼近于0,则称为T为曲面在P0P_0P0点的切平面。

存在性:如果偏导数fx(x,y),fy(x,y)f_x(x,y), f_y(x,y)fx(x,y),fy(x,y)(x0,y0)(x_0, y_0)(x0,y0)存在于某个邻域所有点,且函数在(x0,y0)(x_0,y_0)(x0,y0)连续。

切平面公式:

  • z−z0=fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0),点P(x0,y0,z0)在切平面上z-z_0 = f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0), 点P(x_0,y_0,z_0)在切平面上zz0=fx(x0,y0)(xx0)+fy(x0,y0)(yy0),P(x0,y0,z0)在切平面上
  • z−z0=(∂z∂x)P0(x−x0)+(∂z∂y)P0(y−y0),点P(x0,y0,z0)在切平面上z-z_0 = (\frac{\partial z}{\partial x})_{P_0}(x-x_0) + (\frac{\partial z}{\partial y})_{P_0}(y-y_0), 点P(x_0,y_0,z_0)在切平面上zz0=(xz)P0(xx0)+(yz)P0(yy0),P(x0,y0,z0)在切平面上

基本引理:如果一个函数z=f(x,y)z=f(x,y)z=f(x,y)和其他偏导数fx,fyf_x,f_yfx,fy在点(x0,y0)(x_0, y_0)(x0,y0)处有定义,并且也在该点的某个邻域内,假如fx,fyf_x, f_yfx,fy(x0,y0)(x_0,y_0)(x0,y0)处连续,则有以下公式:
Δz=fx(x0,y0)Δx+fy(x0,y0)Δy+ϵ1Δx+ϵ2Δy,当Δx,Δy−>0时,ϵ1,ϵ2−>0\Delta z = f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y + \epsilon_1\Delta x + \epsilon_2 \Delta y, 当\Delta x, \Delta y->0时,\epsilon_1, \epsilon_2 ->0Δz=fx(x0,y0)Δx+fy(x0,y0)Δy+ϵ1Δx+ϵ2Δy,Δx,Δy>0时,ϵ1,ϵ2>0

一个函数z=f(x,y)z=f(x,y)z=f(x,y)的偏导数值fx(x0,y0)f_x(x_0,y_0)fx(x0,y0)fy(x0,y0)f_y(x_0,y_0)fy(x0,y0)都存在,且满足基本引理,则称函数在点(x0,y0)(x_0,y_0)(x0,y0)可微分。

仅仅在这种情形下(点(x0,y0)(x_0, y_0)(x0,y0)处可微分),才能用dx,dy表示Δx,Δydx,dy表示\Delta x, \Delta ydx,dy表示Δx,Δy,才有以下公式:dz=fx(x0,y0)dx+fy(x0,y0)dydz = f_x(x_0, y_0)dx + f_y(x_0,y_0)dydz=fx(x0,y0)dx+fy(x0,y0)dy

如果点(x0,y0)(x_0, y_0)(x0,y0)处可微分,则曲面z=f(x,y)z=f(x,y)z=f(x,y)在点(x0,y0)(x_0,y_0)(x0,y0)处理有一个切平面,dz是沿平面在z方向的增量,dz的几种表示形式:

  • dz=∂z∂xdx+∂z∂ydydz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y}dydz=xzdx+yzdy
  • df=∂f∂xdx+∂f∂ydydf = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y}dydf=xfdx+yfdy

函数z=f(x,y)在某一点处理可微分的话,则在那一点自动连续(得到,Δx、Δy−>0时,Δz−>0\Delta x、\Delta y->0时,\Delta z->0ΔxΔy>0时,Δz>0)。

单多变量微分区别:

  • 单个变量时,函数在某个点有导数,则在该点连续;但是多变量不行,单个偏导数的存在不能得出连续

方向导数、梯度

函数f(x,y,z)f(x,y,z)f(x,y,z),点P(x,y,z),位置向量R=xi⃗+yj⃗+zk⃗R = x\vec{i} + y\vec{j} + z\vec{k}R=xi+yj+zk, u⃗\vec{u}u是指定的移动方向的单位向量,P移动到Q点的距离为Δs=∣ΔR∣\Delta s = |\Delta R|Δs=∣ΔR, Q点坐标为Q = (x+Δx,y+Δy,z+Δz)(x + \Delta x, y + \Delta y, z + \Delta z)(x+Δx,y+Δy,z+Δz),则:

  • f关于距离的平均变化率为:Δf/Δs\Delta f / \Delta sΔfs
  • 当Q点逼近P点时Δf/Δs\Delta f/\Delta sΔfs的极限为:
    dfds=lim⁡Δs−>0ΔfΔs\frac{df}{ds} = \lim_{\Delta s-> 0}\frac{\Delta f}{\Delta s}dsdf=limΔs>0ΔsΔf,称作f在点P于方向u⃗\vec{u}u上的导数,或简称f的方向导数

假设f(x,y,z)关于x,y,z有连续的偏导数。

f的梯度(可适配到任意维):grad f⃗=∂f∂xi⃗+∂f∂yj⃗+∂f∂zk⃗=(∂∂xi⃗+∂∂yj⃗+∂∂zk⃗)f\vec{grad\ f} = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j} + \frac{\partial f}{\partial z}\vec{k} = (\frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k})fgrad f=xfi+yfj+zfk=(xi+yj+zk)f

方向导数的计算:

  • dfds=(∂f∂xi⃗+∂f∂yj⃗+∂f∂zk⃗)⋅dR⃗ds\frac{df}{ds} = (\frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j} + \frac{\partial f}{\partial z}\vec{k}) \cdot \frac{d\vec{R}}{ds}dsdf=(xfi+yfj+zfk)dsdR
  • dfds=(grad f⃗)⋅dR⃗ds\frac{df}{ds} = (\vec{grad\ f}) \cdot \frac{d\vec{R}}{ds}dsdf=(grad f)dsdR
  • dfds=(grad f⃗)⋅u⃗\frac{df}{ds} = (\vec{grad\ f}) \cdot \vec{u}dsdf=(grad f)u
  • dfds=∣grad f⃗∣cos⁡θ\frac{df}{ds} = |\vec{grad\ f}|\cos \thetadsdf=grad fcosθ

梯度的基本属性:

  • df/ds在任何方向上的方向导数,都是梯度grad f在该方向的标量投影(梯度包含点P所有方向上的导数)
  • 向量梯度grad f能够指出哪个方向上f增加最快
  • 向量梯度grad f的长度是f的最快增长率
  • 函数f(x,y,z)在点P0P_0P0的梯度垂直于经过点P0P_0P0的水平曲面

水平曲面(等温面、等势面,等值相同的点组成的曲面, 如f(x,y,z)=c1f(x,y,z) = c_1f(x,y,z)=c1)的向量梯度grad fgrad\ fgrad f是垂直于点P0P_0P0处的水平曲面:(grad f⃗)⋅dR⃗ds=0(\vec{grad\ f}) \cdot \frac{d\vec{R}}{ds} = 0(grad f)dsdR=0。因为dR⃗/dsd\vec{R}/dsdR/ds在曲线在P0P_0P0的单位正切向量,则梯度垂直于该正切向量,垂直于所有方向的正切向量(所有正切向量的平面为正切平面),所以垂直于水平曲面。

则点P0P_0P0处的正切平面方程为:∂f∂xp0(x−x0)+∂f∂yP0(y−y0)+∂f∂zP0(z−z0)=0\frac{\partial f}{\partial x}_{p_0}(x-x_0) + \frac{\partial f}{\partial y}_{P_0}(y-y_0) + \frac{\partial f}{\partial z}_{P_0}(z-z_0) = 0xfp0(xx0)+yfP0(yy0)+zfP0(zz0)=0

函数f(x,y,z)的梯度可以表示为:grad f⃗=(∂∂xi⃗+∂∂yj⃗+∂∂zk⃗)f\vec{grad\ f} = (\frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k})fgrad f=(xi+yj+zk)f

表示形式(del/nabla operator):∇⃗=∂∂xi⃗+∂∂yj⃗+∂∂zk⃗\vec{\nabla} = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}=xi+yj+zk

∇\nabla和函数f的乘积为一个向量,即向量梯度f,grad f⃗grad\ \vec{f}grad f,则

  • grad f⃗=∇⃗fgrad\ \vec{f} = \vec{\nabla} fgrad f=f,读作del f,称作f的梯度场
  • dfds=∇⃗f⋅dR⃗ds=∇⃗f⋅u⃗,∇读作grad\frac{df}{ds} = \vec{\nabla} f \cdot \frac{d \vec{R}}{ds} =\vec{\nabla} f \cdot \vec{u}, \nabla读作graddsdf=fdsdR=fu,读作grad

链式法则

w=f(x,y)w = f(x, y)w=f(x,y),x、y均是关于t的函数,则:dwdt=∂w∂xdxdt+∂w∂ydydt\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt}dtdw=xwdtdx+ywdtdy, w是因变量,x、y是中间变量,t是自变量,可扩展为任意多中间变量。

w=f(x,y,z)w = f(x,y,z)w=f(x,y,z),x,y,z都是关于t的函数则:
dwdt=∂w∂xdxdt+∂w∂ydydt+∂w∂zdzdt\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt}dtdw=xwdtdx+ywdtdy+zwdtdz

如果x、y、z是关于t、u的函数,则w也是关于t、u的函数,则:

  • ∂w∂t=∂w∂x∂x∂t+∂w∂y∂y∂t+∂w∂z∂z∂t\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t}tw=xwtx+ywty+zwtz
  • ∂w∂t=∂w∂x∂x∂u+∂w∂y∂y∂u+∂w∂z∂z∂u\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial u}tw=xwux+ywuy+zwuz

w 关于x、y、z的全微分公式:dw=∂w∂xdy+∂w∂ydy+∂w∂zdzdw = \frac{\partial w}{\partial x} dy + \frac{\partial w}{\partial y}dy + \frac{\partial w}{\partial z}dzdw=xwdy+ywdy+zwdz

欧拉齐次函数定理:如果f(x,y)f(x,y)f(x,y)是n次齐次函数(f(tx,ty)=tnf(x,y)f(tx,ty) = t^nf(x,y)f(tx,ty)=tnf(x,y)),则x∂f∂x+y∂f∂y=nf(x,y)x\frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = nf(x,y)xxf+yyf=nf(x,y)

最大最小问题

函数f(x,y),x,y是自变量(独立变量),其(相对)最大、最小值满足:

  • ∂z∂x=0\frac{\partial z}{\partial x} = 0xz=0
  • ∂z∂y=0\frac{\partial z}{\partial y} = 0yz=0

满足这2个条件的点为临界点。临界点是极值的必要条件,非充要条件。

通过二阶导数测试来对临界点分类:
如果f(x,y)在临界点C (x0,y0)(x_0, y_0)(x0,y0)的邻域内有连续的二阶导数,则如果D=fxx(x0,y0)fyy(x0,y0)−[fxy(x0,y0)]2D = f_{xx}(x_0,y_0) f_{yy}(x_0, y_0) - [f_{xy}(x_0,y_0)]^2D=fxx(x0,y0)fyy(x0,y0)[fxy(x0,y0)]2,则:

  • C是一个最大值点:如果D>0,且fxx(x0,y0)<0f_{xx}(x_0,y_0)<0fxx(x0,y0)<0
  • C是一个最小值点:如果D>0,且fxx(x0,y0)>0f_{xx}(x_0,y_0)>0fxx(x0,y0)>0
  • C是一个鞍点saddle point:如果D<0
  • 无法确定:如果D=0

受约束的最大最小值&拉格朗日乘子

函数f(x,y)f(x,y)f(x,y),约束条件为:g(x,y)=0g(x,y) = 0g(x,y)=0,找到f(x,y)=c(c1,c2...)f(x,y) =c(c_1,c_2...)f(x,y)=c(c1,c2...)表示的水平曲面与约束函数的交点,当c最大值,交点为P0P_0P0即为最大/最小点。此时满足如下:

  • grad f⃗=∂f∂xi⃗+∂f∂yj⃗grad\ \vec{f} = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j}grad f=xfi+yfj
  • grad g⃗=∂g∂xi⃗+∂g∂yj⃗grad\ \vec{g} = \frac{\partial g}{\partial x}\vec{i} + \frac{\partial g}{\partial y}\vec{j}grad g=xgi+ygj
  • 两个梯度向量都垂直于水平曲线、约束曲线,则grad f⃗=λ grad g⃗,λ为某个数,grad g⃗≠0⃗grad\ \vec{f} = \lambda\ grad\ \vec{g}, \lambda为某个数,grad\ \vec{g} \neq \vec{0}grad f=λ grad g,λ为某个数,grad g=0

则:

  • ∂f∂x=λ∂g∂x\frac{\partial f}{\partial x} = \lambda \frac{\partial g}{\partial x}xf=λxg
  • ∂f∂y=λ∂g∂y\frac{\partial f}{\partial y} = \lambda \frac{\partial g}{\partial y}yf=λyg
  • g(x,y)=0g(x,y) = 0g(x,y)=0

定义函数L(x,y,λ)=f(x,y)−λg(x,y),x,y,λ是三个变量L(x,y,\lambda) = f(x,y) - \lambda g(x,y), x,y,\lambda是三个变量L(x,y,λ)=f(x,y)λg(x,y),x,y,λ是三个变量,则:

  • ∂L∂x=0\frac{\partial L}{\partial x} = 0xL=0
  • ∂L∂y=0\frac{\partial L}{\partial y} = 0yL=0
  • ∂L∂λ=0\frac{\partial L}{\partial \lambda} = 0λL=0

其中变量λ\lambdaλ是拉格朗日乘子:将寻找f(x,y)在约束条件g(x,y)=0g(x,y) = 0g(x,y)=0下的最大最小值,转化为函数L的无约束的最大、最小值。该方法为拉格朗日乘法,其特点为:

  • 任意选择自变量,不会影响问题的对称性
  • 引入新变量λ\lambdaλ消除约束条件

拉格朗日乘子法可以扩展到更多变量,如L=f(x,y,z)−λg(x,y,z)L = f(x,y,z) - \lambda g(x,y,z)L=f(x,y,z)λg(x,y,z)

  • ∂L∂x=0\frac{\partial L}{\partial x} = 0xL=0
  • ∂L∂y=0\frac{\partial L}{\partial y} = 0yL=0
  • ∂L∂z=0\frac{\partial L}{\partial z} = 0zL=0
  • ∂L∂λ=0\frac{\partial L}{\partial \lambda} = 0λL=0

拉格朗日乘子法可以扩展到更多约束条件,如g(x,y,z)=0,且h(x,y,z)=0g(x,y,z)=0,且h(x,y,z)=0g(x,y,z)=0,且h(x,y,z)=0,则会有2个拉格朗日乘子,满足性质grad f⃗=λ grad g⃗+μ grad h⃗,grad g⃗≠0⃗且grad h⃗≠0⃗,两者也不平行grad\ \vec{f} = \lambda\ grad\ \vec{g} + \mu\ grad\ \vec{h}, grad\ \vec{g} \neq \vec{0}且grad\ \vec{h} \neq \vec{0},两者也不平行grad f=λ grad g+μ grad h,grad g=0grad h=0,两者也不平行
此时L=f(x,y,z)−λg(x,y,z)−μh(x,y,z)L = f(x,y,z) - \lambda g(x,y,z) - \mu h(x,y,z)L=f(x,y,z)λg(x,y,z)μh(x,y,z),满足:

  • ∂L∂x=0\frac{\partial L}{\partial x} = 0xL=0
  • ∂L∂y=0\frac{\partial L}{\partial y} = 0yL=0
  • ∂L∂z=0\frac{\partial L}{\partial z} = 0zL=0
  • ∂L∂λ=0\frac{\partial L}{\partial \lambda} = 0λL=0
  • ∂L∂μ=0\frac{\partial L}{\partial \mu} = 0μL=0

隐函数微分

假设函数z = F(x,y),存在y=f(x),令z=F(x,f(x))=cz = F(x,f(x)) = cz=F(x,f(x))=c,F(x,y)有连续偏导数,则dzdx=∂F∂x+∂F∂ydydx=0\frac{dz}{dx} = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0dxdz=xF+yFdxdy=0,则隐函数的微分计算方程为:

  • dydx=−Fx(x,y)Fy(x,y),Fy(x,y)≠0\frac{dy}{dx} = -\frac{F_x(x,y)}{F_y(x,y)}, F_y(x,y)\neq 0dxdy=Fy(x,y)Fx(x,y),Fy(x,y)=0

任何可微函数y=f(x),如果满足F(x,f(x))=cF(x,f(x)) = cF(x,f(x))=c,则称y=f(x)是F(x,y)定义的隐函数。

隐函数定理:
设 F(x,y)在点(x0,y0)(x_0, y_0)(x0,y0)的某个邻域内具有连续的偏导数,并假设F(x0,y0)=cF(x_0,y_0) = cF(x0,y0)=cFy(x0,y0)≠0Fy(x_0, y_0) \neq 0Fy(x0,y0)=0,那么存在一个关于x0x_0x0的区间I,其性质是存在一个定义在I上的可微分函数y = f(x),使得y0=f(x0)y_0 = f(x_0)y0=f(x0)且F[x,f(x)] = c,则这个函数y=f(x)的导数公式:dydx=−FxFy\frac{dy}{dx} = - \frac{F_x}{F_y}dxdy=FyFx,f(x)因此也是连续的

三变量等式:

假设F(x,y,z) = c定义了某个隐函数z=f(x,y)z = f(x,y)z=f(x,y),则:

  • ∂z∂x=−∂F/∂x∂F/∂z\frac{\partial z}{\partial x} = -\frac{\partial F/\partial x}{\partial F/ \partial z}xz=F/zF/x
  • ∂z∂y=−∂F/∂y∂F/∂z\frac{\partial z}{\partial y} = -\frac{\partial F/\partial y}{\partial F/ \partial z}yz=F/zF/y

即如果 ∂F/∂z≠0\partial F/\partial z \neq 0F/z=0,在曲面 F(x, y, z) = c上的点(x0,y0,z0)(x_0, y_0, z_0)(x0,y0,z0)处,则在该点的邻域中,曲面定义了唯一的隐函数 z = f(x, y) 使得z0=f(x0,y0)z_0 = f(x_0, y_0)z0=f(x0,y0),且该函数的偏导数由上述方程计算。

g(y)=x的反函数问题:即求解F(x,y)=g(y)−x=0F(x,y)=g(y)-x =0F(x,y)=g(y)x=0的y,通过上述方程得到:dydx=−∂F/∂x∂F/∂y=−−1g′(y)=1dx/dy\frac{dy}{dx} = -\frac{\partial F/\partial x}{\partial F/\partial y} = -\frac{-1}{g'(y)}=\frac{1}{dx/dy}dxdy=F/yF/x=g(y)1=dx/dy1

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值