【数据分析】基于大数据的农作物需水量数据可视化分析系统 | 大数据毕设实战项目 选题推荐 可视化大屏 文档指导 Hadoop SPark java Python

💖💖作者:计算机毕业设计杰瑞
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学校实战项目
计算机毕业设计选题推荐

基于大数据的农作物需水量数据可视化分析系统介绍

基于大数据的农作物需水量数据可视化分析系统是一套集数据处理、分析计算和可视化展示于一体的智慧农业解决方案。系统采用Hadoop分布式存储架构结合Spark大数据计算引擎,能够高效处理海量农作物需水量相关数据,通过Python语言和Django框架构建稳定的后端服务体系。前端采用Vue框架配合ElementUI组件库和Echarts图表库,为用户提供直观友好的交互界面和丰富的数据可视化效果。系统核心功能涵盖农作物需水量数据管理、农作物特征深度分析、种植优化策略分析、环境因素关联分析、智能决策支持和区域用水对比分析等模块。通过Spark SQL进行复杂数据查询和统计分析,结合Pandas和NumPy进行数据处理和科学计算,系统能够为农业生产者提供精准的需水量预测、科学的种植建议和智能化的决策支持。整个系统基于MySQL数据库存储基础数据,利用HDFS分布式文件系统存储大规模数据集,实现了从数据采集、存储、计算到展示的完整闭环,为现代农业的精准管理和智能决策提供了有力的技术支撑。

基于大数据的农作物需水量数据可视化分析系统演示视频

【数据分析】基于大数据的农作物需水量数据可视化分析系统 | 大数据毕设实战项目 选题推荐 可视化大屏 文档指导 Hadoop SPark java Python

基于大数据的农作物需水量数据可视化分析系统演示图片

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于大数据的农作物需水量数据可视化分析系统代码展示

spark = SparkSession.builder.appName("CropWaterAnalysis").config("spark.sql.adaptive.enabled", "true").getOrCreate()
def analyze_crop_water_demand(crop_type, region, start_date, end_date):
    water_data_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/agriculture").option("dbtable", "crop_water_data").option("user", "root").option("password", "123456").load()
    filtered_data = water_data_df.filter((water_data_df.crop_type == crop_type) & (water_data_df.region == region) & (water_data_df.date >= start_date) & (water_data_df.date <= end_date))
    daily_water_avg = filtered_data.groupBy("date").agg({"water_demand": "avg", "temperature": "avg", "humidity": "avg"}).withColumnRenamed("avg(water_demand)", "avg_water_demand")
    monthly_stats = filtered_data.select(month("date").alias("month"), "water_demand", "rainfall", "temperature").groupBy("month").agg({"water_demand": "sum", "rainfall": "avg", "temperature": "avg"})
    correlation_analysis = filtered_data.select("water_demand", "temperature", "humidity", "rainfall", "soil_moisture").toPandas()
    correlation_matrix = correlation_analysis.corr()
    peak_demand_days = filtered_data.orderBy(desc("water_demand")).limit(10)
    water_efficiency = filtered_data.withColumn("efficiency_ratio", col("actual_yield") / col("water_demand")).select("date", "efficiency_ratio", "water_demand")
    trend_analysis = filtered_data.select("date", "water_demand").orderBy("date")
    seasonal_pattern = filtered_data.select(dayofyear("date").alias("day_of_year"), "water_demand").groupBy("day_of_year").agg({"water_demand": "avg"})
    weather_impact = filtered_data.select("temperature", "humidity", "rainfall", "water_demand").toPandas()
    optimal_water_range = filtered_data.filter((filtered_data.actual_yield >= filtered_data.expected_yield * 0.9)).agg({"water_demand": "min", "water_demand": "max"})
    result_data = {"daily_average": daily_water_avg.collect(), "monthly_statistics": monthly_stats.collect(), "correlation_matrix": correlation_matrix.to_dict(), "peak_demand": peak_demand_days.collect(), "efficiency_data": water_efficiency.collect(), "trend_data": trend_analysis.collect(), "seasonal_data": seasonal_pattern.collect(), "weather_correlation": weather_impact.corr().to_dict(), "optimal_range": optimal_water_range.collect()}
    return result_data
def optimize_crop_planting(region, target_year, crop_options):
    historical_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/agriculture").option("dbtable", "historical_planting_data").option("user", "root").option("password", "123456").load()
    climate_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/agriculture").option("dbtable", "climate_prediction").option("user", "root").option("password", "123456").load()
    soil_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/agriculture").option("dbtable", "soil_analysis").option("user", "root").option("password", "123456").load()
    region_historical = historical_df.filter(historical_df.region == region)
    crop_performance = region_historical.groupBy("crop_type").agg({"yield_per_hectare": "avg", "water_consumption": "avg", "profit_margin": "avg", "success_rate": "avg"}).withColumnRenamed("avg(yield_per_hectare)", "avg_yield")
    climate_forecast = climate_df.filter((climate_df.region == region) & (climate_df.year == target_year))
    soil_conditions = soil_df.filter(soil_df.region == region).select("ph_level", "nitrogen_content", "phosphorus_content", "potassium_content", "organic_matter")
    suitable_crops = []
    for crop in crop_options:
        crop_history = region_historical.filter(region_historical.crop_type == crop)
        avg_water_need = crop_history.agg({"water_consumption": "avg"}).collect()[0][0] if crop_history.count() > 0 else 0
        climate_suitability = climate_forecast.select("predicted_rainfall", "avg_temperature", "humidity_level").collect()
        soil_match_score = soil_conditions.toPandas()
        risk_factors = crop_history.filter(crop_history.yield_per_hectare < crop_history.expected_yield * 0.8).count()
        total_plantings = crop_history.count()
        risk_percentage = (risk_factors / total_plantings * 100) if total_plantings > 0 else 50
        profit_potential = crop_performance.filter(crop_performance.crop_type == crop).select("avg(profit_margin)").collect()
        water_efficiency_score = crop_history.withColumn("efficiency", col("yield_per_hectare") / col("water_consumption")).agg({"efficiency": "avg"}).collect()
        market_demand_trend = region_historical.filter((region_historical.crop_type == crop) & (region_historical.year >= target_year - 3)).select("market_price", "demand_index").toPandas()
        optimization_score = (avg_water_need * 0.3 + risk_percentage * 0.25 + (profit_potential[0][0] if profit_potential else 0) * 0.45)
        suitable_crops.append({"crop_type": crop, "water_requirement": avg_water_need, "risk_level": risk_percentage, "profit_potential": profit_potential[0][0] if profit_potential else 0, "optimization_score": optimization_score, "climate_match": len(climate_suitability), "soil_compatibility": soil_match_score.mean().mean()})
    recommended_crops = sorted(suitable_crops, key=lambda x: x["optimization_score"], reverse=True)[:5]
    planting_calendar = region_historical.select("crop_type", "planting_month", "harvest_month", "growth_period").distinct().collect()
    return {"recommended_crops": recommended_crops, "planting_schedule": planting_calendar, "region_analysis": {"soil_conditions": soil_conditions.collect(), "climate_forecast": climate_forecast.collect()}}
def intelligent_decision_support(farm_id, current_conditions, decision_type):
    farm_data_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/agriculture").option("dbtable", "farm_monitoring_data").option("user", "root").option("password", "123456").load()
    decision_history_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/agriculture").option("dbtable", "decision_history").option("user", "root").option("password", "123456").load()
    weather_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/agriculture").option("dbtable", "weather_data").option("user", "root").option("password", "123456").load()
    farm_current_data = farm_data_df.filter(farm_data_df.farm_id == farm_id).orderBy(desc("timestamp")).limit(30)
    recent_weather = weather_df.filter(weather_df.region == current_conditions["region"]).orderBy(desc("date")).limit(7)
    similar_scenarios = decision_history_df.filter((abs(decision_history_df.temperature - current_conditions["temperature"]) < 5) & (abs(decision_history_df.humidity - current_conditions["humidity"]) < 10) & (decision_history_df.crop_type == current_conditions["crop_type"]))
    successful_decisions = similar_scenarios.filter(similar_scenarios.outcome_rating >= 4).select("decision_action", "water_amount", "timing", "outcome_rating")
    irrigation_recommendations = farm_current_data.select("soil_moisture", "crop_stage", "last_irrigation").toPandas()
    current_moisture_avg = irrigation_recommendations["soil_moisture"].mean()
    crop_stage = current_conditions.get("crop_stage", "unknown")
    if decision_type == "irrigation":
        base_water_amount = 50 if crop_stage == "flowering" else 30 if crop_stage == "growth" else 20
        weather_adjustment = recent_weather.agg({"rainfall": "sum", "temperature": "avg"}).collect()[0]
        rainfall_factor = max(0, 1 - weather_adjustment[0] / 20) if weather_adjustment[0] else 1
        temperature_factor = 1.2 if weather_adjustment[1] > 30 else 0.8 if weather_adjustment[1] < 20 else 1
        recommended_amount = base_water_amount * rainfall_factor * temperature_factor
        urgency_level = "high" if current_moisture_avg < 30 else "medium" if current_moisture_avg < 50 else "low"
    elif decision_type == "fertilization":
        nutrient_data = farm_current_data.select("nitrogen_level", "phosphorus_level", "potassium_level").toPandas()
        nutrient_deficiency = nutrient_data.mean() < 60
        recommended_amount = 25 if any(nutrient_deficiency) else 15
        urgency_level = "high" if any(nutrient_data.mean() < 40) else "medium"
    success_probability = len(successful_decisions.collect()) / max(len(similar_scenarios.collect()), 1) * 100
    risk_assessment = farm_current_data.select("pest_risk", "disease_risk", "weather_risk").toPandas().mean()
    alternative_actions = successful_decisions.select("decision_action").distinct().collect()
    cost_benefit_analysis = {"estimated_cost": recommended_amount * 2.5, "expected_benefit": recommended_amount * 8.2, "roi_percentage": (recommended_amount * 8.2 - recommended_amount * 2.5) / (recommended_amount * 2.5) * 100}
    return {"recommended_action": decision_type, "amount": recommended_amount, "urgency": urgency_level, "success_probability": success_probability, "risk_factors": risk_assessment.to_dict(), "alternatives": [row["decision_action"] for row in alternative_actions], "cost_analysis": cost_benefit_analysis, "timing_suggestion": "morning" if decision_type == "irrigation" else "evening", "monitoring_points": ["soil_moisture", "crop_response", "weather_changes"]}

基于大数据的农作物需水量数据可视化分析系统文档展示

在这里插入图片描述

💖💖作者:计算机毕业设计杰瑞
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学校实战项目
计算机毕业设计选题推荐

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值