【数据分析】基于大数据的玉米产量数据可视化分析系统 | 大数据毕设实战项目 选题推荐 可视化大屏 文档指导 Hadoop SPark java Python

#AI提效·半月创作挑战赛#

💖💖作者:计算机毕业设计杰瑞
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学校实战项目
计算机毕业设计选题推荐

基于大数据的玉米产量数据可视化分析系统介绍

本系统是一个基于大数据技术栈构建的玉米产量数据可视化分析平台,运用Hadoop分布式存储框架结合Spark大数据处理引擎,实现对海量玉米产量数据的高效处理与深度分析。系统采用Django作为后端开发框架,通过Python语言整合Pandas、NumPy等数据科学库,搭配MySQL数据库进行数据持久化存储。前端界面运用Vue.js框架配合ElementUI组件库构建用户交互界面,集成Echarts图表库实现数据的多维度可视化展示。系统核心功能涵盖玉米产量数据的采集、存储、清洗、分析以及可视化呈现,支持数据质量分析模块对原始数据进行完整性、准确性、一致性检验,环境影响分析模块能够探索气候、土壤、降水等环境因子与玉米产量的关联性。通过HDFS分布式文件系统存储大规模数据集,利用Spark SQL进行复杂查询与统计分析,最终以直观的图表形式向用户展示分析结果,为农业生产决策提供数据支撑,让使用者能够快速掌握玉米产量的变化趋势和影响因素。

基于大数据的玉米产量数据可视化分析系统演示视频

【数据分析】基于大数据的玉米产量数据可视化分析系统 | 大数据毕设实战项目 选题推荐 可视化大屏 文档指导 Hadoop SPark java Python

基于大数据的玉米产量数据可视化分析系统演示图片

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于大数据的玉米产量数据可视化分析系统代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, avg, sum, count, when, isnan, isnull, stddev, min, max, corr
import pandas as pd
import numpy as np
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
import json

spark = SparkSession.builder.appName("CornYieldAnalysis").config("spark.sql.adaptive.enabled", "true").getOrCreate()

@csrf_exempt
def corn_yield_data_analysis(request):
    """玉米产量数据处理与分析"""
    if request.method == 'POST':
        data = json.loads(request.body)
        region = data.get('region', 'all')
        year_range = data.get('year_range', [2020, 2024])
        df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/corn_db").option("dbtable", "corn_yield_data").option("user", "root").option("password", "password").load()
        filtered_df = df.filter((col("year") >= year_range[0]) & (col("year") <= year_range[1]))
        if region != 'all':
            filtered_df = filtered_df.filter(col("region") == region)
        yield_stats = filtered_df.groupBy("year", "region").agg(avg("yield_per_hectare").alias("avg_yield"), sum("total_yield").alias("total_production"), count("*").alias("record_count"))
        monthly_trend = filtered_df.groupBy("year", "month").agg(avg("yield_per_hectare").alias("monthly_avg"))
        regional_comparison = filtered_df.groupBy("region").agg(avg("yield_per_hectare").alias("region_avg"), stddev("yield_per_hectare").alias("yield_variance"))
        yield_distribution = filtered_df.select("yield_per_hectare").rdd.map(lambda x: x[0]).histogram(20)
        top_performing_areas = filtered_df.groupBy("region", "county").agg(avg("yield_per_hectare").alias("area_avg")).orderBy(col("area_avg").desc()).limit(10)
        year_over_year_growth = filtered_df.groupBy("year").agg(avg("yield_per_hectare").alias("yearly_avg")).orderBy("year")
        seasonal_analysis = filtered_df.groupBy("season").agg(avg("yield_per_hectare").alias("seasonal_avg"), count("*").alias("seasonal_count"))
        productivity_ranking = filtered_df.select("farm_id", "yield_per_hectare", "region").orderBy(col("yield_per_hectare").desc()).limit(50)
        correlation_matrix = filtered_df.select(corr("yield_per_hectare", "rainfall").alias("rainfall_corr"), corr("yield_per_hectare", "temperature").alias("temp_corr"), corr("yield_per_hectare", "soil_quality").alias("soil_corr"))
        result_data = {
            'yield_statistics': yield_stats.toPandas().to_dict('records'),
            'monthly_trends': monthly_trend.toPandas().to_dict('records'),
            'regional_comparison': regional_comparison.toPandas().to_dict('records'),
            'yield_distribution': {'buckets': yield_distribution[0], 'frequencies': yield_distribution[1]},
            'top_areas': top_performing_areas.toPandas().to_dict('records'),
            'yearly_growth': year_over_year_growth.toPandas().to_dict('records'),
            'seasonal_data': seasonal_analysis.toPandas().to_dict('records'),
            'productivity_ranking': productivity_ranking.toPandas().to_dict('records'),
            'correlations': correlation_matrix.toPandas().to_dict('records')[0]
        }
        return JsonResponse({'status': 'success', 'data': result_data})

@csrf_exempt  
def data_quality_analysis(request):
    """数据质量分析与检测"""
    if request.method == 'POST':
        df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/corn_db").option("dbtable", "corn_yield_data").option("user", "root").option("password", "password").load()
        total_records = df.count()
        missing_yield = df.filter(col("yield_per_hectare").isNull() | isnan(col("yield_per_hectare"))).count()
        missing_rainfall = df.filter(col("rainfall").isNull() | isnan(col("rainfall"))).count()
        missing_temperature = df.filter(col("temperature").isNull() | isnan(col("temperature"))).count()
        missing_soil = df.filter(col("soil_quality").isNull() | isnan(col("soil_quality"))).count()
        duplicate_records = df.groupBy("farm_id", "year", "month").count().filter(col("count") > 1).count()
        outlier_detection = df.select("yield_per_hectare").summary("25%", "75%").collect()
        q1 = float(outlier_detection[0]["yield_per_hectare"])
        q3 = float(outlier_detection[1]["yield_per_hectare"])
        iqr = q3 - q1
        lower_bound = q1 - 1.5 * iqr
        upper_bound = q3 + 1.5 * iqr
        outliers_count = df.filter((col("yield_per_hectare") < lower_bound) | (col("yield_per_hectare") > upper_bound)).count()
        data_completeness = df.select([count(when(col(c).isNull() | isnan(col(c)), c)).alias(c) for c in df.columns])
        completeness_stats = data_completeness.toPandas().to_dict('records')[0]
        consistency_check = df.filter((col("yield_per_hectare") < 0) | (col("rainfall") < 0) | (col("temperature") < -50) | (col("temperature") > 60)).count()
        temporal_gaps = df.groupBy("year", "month").count().orderBy("year", "month")
        expected_records_per_month = df.select("farm_id").distinct().count()
        temporal_completeness = temporal_gaps.filter(col("count") < expected_records_per_month * 0.8).count()
        data_freshness = df.agg(max("last_updated").alias("latest_update"), min("last_updated").alias("earliest_update"))
        regional_coverage = df.groupBy("region").count().orderBy(col("count").desc())
        quality_score = ((total_records - missing_yield - missing_rainfall - missing_temperature - outliers_count - consistency_check) / total_records) * 100
        quality_report = {
            'total_records': total_records,
            'missing_data': {'yield': missing_yield, 'rainfall': missing_rainfall, 'temperature': missing_temperature, 'soil': missing_soil},
            'duplicate_records': duplicate_records,
            'outliers_count': outliers_count,
            'outlier_bounds': {'lower': lower_bound, 'upper': upper_bound},
            'completeness_stats': completeness_stats,
            'consistency_errors': consistency_check,
            'temporal_gaps': temporal_completeness,
            'data_freshness': data_freshness.toPandas().to_dict('records')[0],
            'regional_coverage': regional_coverage.toPandas().to_dict('records'),
            'overall_quality_score': round(quality_score, 2)
        }
        return JsonResponse({'status': 'success', 'quality_report': quality_report})

@csrf_exempt
def environment_impact_analysis(request):
    """环境影响因子分析"""  
    if request.method == 'POST':
        data = json.loads(request.body)
        analysis_type = data.get('analysis_type', 'comprehensive')
        df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/corn_yield_data").option("user", "root").option("password", "password").load()
        rainfall_correlation = df.stat.corr("yield_per_hectare", "rainfall")
        temperature_correlation = df.stat.corr("yield_per_hectare", "temperature") 
        soil_correlation = df.stat.corr("yield_per_hectare", "soil_quality")
        humidity_correlation = df.stat.corr("yield_per_hectare", "humidity")
        rainfall_ranges = df.withColumn("rainfall_range", when(col("rainfall") < 500, "low").when(col("rainfall") < 800, "medium").otherwise("high")).groupBy("rainfall_range").agg(avg("yield_per_hectare").alias("avg_yield"), count("*").alias("sample_count"))
        temperature_ranges = df.withColumn("temp_range", when(col("temperature") < 15, "cool").when(col("temperature") < 25, "moderate").otherwise("warm")).groupBy("temp_range").agg(avg("yield_per_hectare").alias("avg_yield"), count("*").alias("sample_count"))
        soil_quality_impact = df.groupBy("soil_type").agg(avg("yield_per_hectare").alias("avg_yield"), avg("soil_quality").alias("avg_soil_score"), count("*").alias("sample_count")).orderBy(col("avg_yield").desc())
        seasonal_environment = df.groupBy("season").agg(avg("rainfall").alias("avg_rainfall"), avg("temperature").alias("avg_temperature"), avg("yield_per_hectare").alias("avg_yield"), stddev("yield_per_hectare").alias("yield_variance"))
        optimal_conditions = df.filter((col("yield_per_hectare") > df.approxQuantile("yield_per_hectare", [0.8], 0.01)[0])).agg(avg("rainfall").alias("optimal_rainfall"), avg("temperature").alias("optimal_temperature"), avg("humidity").alias("optimal_humidity"), avg("soil_quality").alias("optimal_soil"))
        environmental_stress = df.filter((col("rainfall") < 300) | (col("rainfall") > 1200) | (col("temperature") < 10) | (col("temperature") > 35)).agg(avg("yield_per_hectare").alias("stress_yield"), count("*").alias("stress_records"))
        monthly_env_pattern = df.groupBy("month").agg(avg("rainfall").alias("monthly_rainfall"), avg("temperature").alias("monthly_temp"), avg("yield_per_hectare").alias("monthly_yield"))
        regional_env_variation = df.groupBy("region").agg(avg("rainfall").alias("region_rainfall"), avg("temperature").alias("region_temp"), avg("yield_per_hectare").alias("region_yield"), stddev("rainfall").alias("rainfall_variance"))
        climate_trend_analysis = df.groupBy("year").agg(avg("rainfall").alias("yearly_rainfall"), avg("temperature").alias("yearly_temp"), avg("yield_per_hectare").alias("yearly_yield")).orderBy("year")
        extreme_weather_impact = df.filter((col("rainfall") > 1000) | (col("temperature") > 30) | (col("rainfall") < ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/8e4590b24bee4d95bb7b20b896e4bd4e.png#pic_center)
200)).groupBy("year").agg(avg("yield_per_hectare").alias("extreme_weather_yield"), count("*").alias("extreme_events"))
        environment_analysis_result = {
            'correlations': {'rainfall': rainfall_correlation, 'temperature': temperature_correlation, 'soil': soil_correlation, 'humidity': humidity_correlation},
            'rainfall_impact': rainfall_ranges.toPandas().to_dict('records'),
            'temperature_impact': temperature_ranges.toPandas().to_dict('records'),
            'soil_analysis': soil_quality_impact.toPandas().to_dict('records'),
            'seasonal_patterns': seasonal_environment.toPandas().to_dict('records'),
            'optimal_conditions': optimal_conditions.toPandas().to_dict('records')[0],
            'stress_conditions': environmental_stress.toPandas().to_dict('records')[0] if environmental_stress.count() > 0 else {},
            'monthly_patterns': monthly_env_pattern.toPandas().to_dict('records'),
            'regional_variations': regional_env_variation.toPandas().to_dict('records'),
            'climate_trends': climate_trend_analysis.toPandas().to_dict('records'),
            'extreme_weather': extreme_weather_impact.toPandas().to_dict('records')
        }
        return JsonResponse({'status': 'success', 'environment_analysis': environment_analysis_result})

基于大数据的玉米产量数据可视化分析系统文档展示

在这里插入图片描述

💖💖作者:计算机毕业设计杰瑞
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学校实战项目
计算机毕业设计选题推荐

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值