基于大数据的葡萄酒品质数据可视化分析系统【python、Hadoop、spark、毕设、课设、数据爬取、推荐算法、计算机毕业设计实战项目、自然语言处理】

#【投稿赢 iPhone 17】「我的第一个开源项目」故事征集:用代码换C位出道!#

💖💖作者:计算机编程小咖
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目

基于大数据的葡萄酒品质数据可视化分析系统介绍

《基于大数据的葡萄酒品质数据可视化分析系统》是一套完整的大数据处理与可视化分析平台,该系统采用Hadoop+Spark大数据框架作为核心技术架构,通过HDFS分布式文件系统存储海量葡萄酒品质数据,利用Spark及Spark SQL进行高效的数据处理与分析计算,后端采用Spring Boot+MyBatis框架构建RESTful API服务,前端基于Vue+ElementUI+Echarts技术栈实现响应式用户界面和丰富的数据可视化展示效果。系统功能涵盖完整的用户管理模块包括账户中心、个人信息管理等基础功能,核心分析模块提供数据大屏可视化展示、统计分析、酒精酸度品质分析、酒精品质关系分析、理化指标统计分析、指标相关性矩阵分析、固定酸度PH值分析等多维度数据分析功能,同时集成K-Means聚类分析算法实现葡萄酒品质的智能分类,通过酒精浓度分布分析、指标离群值检测分析、PH值与品质关系分析、品质等级分布分析、品质等级指标分析、品质等级占比分析、品质指标均值分析、酒精浓度pH值品质分析、挥发性酸度品质分析等功能模块,为用户提供全方位的葡萄酒品质数据挖掘与可视化分析服务,系统整体架构充分体现了大数据技术在实际业务场景中的应用价值,为葡萄酒行业的品质评估与决策分析提供了强有力的技术支撑。

基于大数据的葡萄酒品质数据可视化分析系统演示视频

基于大数据的葡萄酒品质数据可视化分析系统【python、Hadoop、spark、毕设、课设、数据爬取、推荐算法、计算机毕业设计实战项目、自然语言处理】

基于大数据的葡萄酒品质数据可视化分析系统演示图片

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于大数据的葡萄酒品质数据可视化分析系统代码展示

spark = SparkSession.builder.appName("WineQualityAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/wine_data/wine_quality.csv")
def kmeans_clustering_analysis():
    from pyspark.ml.feature import VectorAssembler
    from pyspark.ml.clustering import KMeans
    from pyspark.ml.evaluation import ClusteringEvaluator
    feature_columns = ["alcohol", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "free_sulfur_dioxide", "total_sulfur_dioxide", "density", "pH", "sulphates"]
    assembler = VectorAssembler(inputCols=feature_columns, outputCol="features")
    wine_features_df = assembler.transform(df)
    kmeans = KMeans(k=3, seed=42, featuresCol="features", predictionCol="cluster")
    model = kmeans.fit(wine_features_df)
    clustered_df = model.transform(wine_features_df)
    evaluator = ClusteringEvaluator(featuresCol="features", predictionCol="cluster", metricName="silhouette")
    silhouette_score = evaluator.evaluate(clustered_df)
    cluster_centers = model.clusterCenters()
    cluster_stats = clustered_df.groupBy("cluster").agg({"quality": "avg", "alcohol": "avg", "pH": "avg"}).collect()
    cluster_distribution = clustered_df.groupBy("cluster").count().collect()
    quality_by_cluster = clustered_df.groupBy("cluster", "quality").count().orderBy("cluster", "quality").collect()
    result_data = {"silhouette_score": silhouette_score, "cluster_centers": [center.tolist() for center in cluster_centers], "cluster_stats": [{"cluster": row["cluster"], "avg_quality": row["avg(quality)"], "avg_alcohol": row["avg(alcohol)"], "avg_ph": row["avg(pH)"]} for row in cluster_stats], "cluster_distribution": [{"cluster": row["cluster"], "count": row["count"]} for row in cluster_distribution], "quality_distribution": [{"cluster": row["cluster"], "quality": row["quality"], "count": row["count"]} for row in quality_by_cluster]}
    return result_data
def correlation_matrix_analysis():
    from pyspark.sql.functions import col, corr
    import numpy as np
    numeric_columns = ["alcohol", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "free_sulfur_dioxide", "total_sulfur_dioxide", "density", "pH", "sulphates", "quality"]
    correlation_matrix = []
    for i, col1 in enumerate(numeric_columns):
        correlation_row = []
        for j, col2 in enumerate(numeric_columns):
            if i == j:
                correlation_row.append(1.0)
            else:
                correlation_value = df.select(corr(col(col1), col(col2)).alias("correlation")).collect()[0]["correlation"]
                correlation_row.append(round(correlation_value, 4) if correlation_value is not None else 0.0)
        correlation_matrix.append(correlation_row)
    strong_correlations = []
    for i in range(len(numeric_columns)):
        for j in range(i+1, len(numeric_columns)):
            corr_value = correlation_matrix[i][j]
            if abs(corr_value) > 0.5:
                strong_correlations.append({"feature1": numeric_columns[i], "feature2": numeric_columns[j], "correlation": corr_value, "strength": "强正相关" if corr_value > 0.5 else "强负相关"})
    quality_correlations = [(numeric_columns[i], correlation_matrix[i][-1]) for i in range(len(numeric_columns)-1)]
    quality_correlations.sort(key=lambda x: abs(x[1]), reverse=True)
    result_data = {"correlation_matrix": correlation_matrix, "column_names": numeric_columns, "strong_correlations": strong_correlations, "quality_correlations": [{"feature": item[0], "correlation": item[1]} for item in quality_correlations[:10]]}
    return result_data
def quality_distribution_analysis():
    from pyspark.sql.functions import col, count, avg, stddev, min as spark_min, max as spark_max
    quality_distribution = df.groupBy("quality").count().orderBy("quality").collect()
    total_count = df.count()
    quality_percentage = [{"quality": row["quality"], "count": row["count"], "percentage": round((row["count"] / total_count) * 100, 2)} for row in quality_distribution]
    quality_stats = df.groupBy("quality").agg(avg("alcohol").alias("avg_alcohol"), avg("pH").alias("avg_ph"), avg("volatile_acidity").alias("avg_volatile_acidity"), avg("citric_acid").alias("avg_citric_acid"), stddev("alcohol").alias("std_alcohol")).collect()
    quality_range_analysis = df.select(spark_min("quality").alias("min_quality"), spark_max("quality").alias("max_quality"), avg("quality").alias("avg_quality"), stddev("quality").alias("std_quality")).collect()[0]
    high_quality_wines = df.filter(col("quality") >= 7).count()
    medium_quality_wines = df.filter((col("quality") >= 5) & (col("quality") < 7)).count()
    low_quality_wines = df.filter(col("quality") < 5).count()
    quality_level_distribution = {"high_quality": {"count": high_quality_wines, "percentage": round((high_quality_wines / total_count) * 100, 2)}, "medium_quality": {"count": medium_quality_wines, "percentage": round((medium_quality_wines / total_count) * 100, 2)}, "low_quality": {"count": low_quality_wines, "percentage": round((low_quality_wines / total_count) * 100, 2)}}
    alcohol_by_quality = df.groupBy("quality").agg(avg("alcohol").alias("avg_alcohol"), count("*").alias("wine_count")).orderBy("quality").collect()
    result_data = {"quality_distribution": quality_percentage, "quality_stats": [{"quality": row["quality"], "avg_alcohol": round(row["avg_alcohol"], 2), "avg_ph": round(row["avg_ph"], 2), "avg_volatile_acidity": round(row["avg_volatile_acidity"], 4), "avg_citric_acid": round(row["avg_citric_acid"], 3), "std_alcohol": round(row["std_alcohol"], 2)} for row in quality_stats], "quality_range": {"min": quality_range_analysis["min_quality"], "max": quality_range_analysis["max_quality"], "average": round(quality_range_analysis["avg_quality"], 2), "std_dev": round(quality_range_analysis["std_quality"], 2)}, "quality_levels": quality_level_distribution, "alcohol_quality_relation": [{"quality": row["quality"], "avg_alcohol": round(row["avg_alcohol"], 2), "wine_count": row["wine_count"]} for row in alcohol_by_quality]}
    return result_data

基于大数据的葡萄酒品质数据可视化分析系统文档展示

在这里插入图片描述

💖💖作者:计算机编程小咖
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值