基于大数据的广西药店数据可视化分析系统【python毕设项目、python实战、Hadoop、spark、毕设必备项目、数据分析】

#【投稿赢 iPhone 17】「我的第一个开源项目」故事征集:用代码换C位出道!#

💖💖作者:计算机编程小咖
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目

基于大数据的旅游上榜景点数据可视化分析系统介绍

《基于大数据的旅游上榜景点数据可视化分析系统》是一套采用现代化大数据技术栈构建的综合性旅游数据分析平台,该系统充分利用Hadoop分布式存储框架和Spark大数据处理引擎的强大计算能力,结合HDFS分布式文件系统实现海量旅游景点数据的高效存储与快速处理。系统采用前后端分离的架构设计,后端基于Django框架和Spring Boot微服务架构提供稳定的API接口服务,前端运用Vue.js响应式框架配合ElementUI组件库和Echarts可视化图表库构建直观友好的用户交互界面,通过HTML、CSS、JavaScript和jQuery技术实现丰富的页面交互效果。系统核心功能涵盖完整的用户管理模块(包含系统首页、个人信息管理、密码修改等基础功能)和强大的数据分析模块,其中统计分析功能运用Spark SQL进行复杂数据查询和聚合计算,数据大屏可视化模块通过Echarts图表库展现多维度数据洞察,城市热度分析和景点特征分析功能基于Pandas和NumPy科学计算库实现深度数据挖掘,价格关联分析模块揭示旅游消费与景点特性的内在联系,专题决策分析功能为旅游行业决策提供数据支撑。整个系统数据存储采用MySQL关系型数据库确保数据一致性和查询效率,通过大数据技术栈的深度整合,实现了从海量旅游数据采集、存储、处理到可视化展示的完整业务闭环,为旅游行业提供了一套功能完善、技术先进的数据分析解决方案。

基于大数据的旅游上榜景点数据可视化分析系统演示视频

基于大数据的旅游上榜景点数据可视化分析系统【python毕设项目、python实战、Hadoop、spark、毕设必备项目、数据分析】

基于大数据的旅游上榜景点数据可视化分析系统演示图片

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于大数据的旅游上榜景点数据可视化分析系统代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, count, avg, sum, desc, asc, when, isnan, isnull
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, DoubleType
import pandas as pd
import numpy as np
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
import json
spark = SparkSession.builder.appName("TourismDataAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
@csrf_exempt
def city_heat_analysis(request):
    tourism_data = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/tourism_db").option("dbtable", "scenic_spots").option("user", "root").option("password", "123456").load()
    tourism_data.createOrReplaceTempView("tourism_spots")
    city_heat_query = """
    SELECT city_name, 
           COUNT(*) as spot_count,
           AVG(rating_score) as avg_rating,
           SUM(visitor_count) as total_visitors,
           AVG(ticket_price) as avg_price,
           CASE WHEN AVG(rating_score) >= 4.5 AND SUM(visitor_count) >= 100000 THEN '热门城市'
                WHEN AVG(rating_score) >= 4.0 AND SUM(visitor_count) >= 50000 THEN '受欢迎城市'
                ELSE '一般城市' END as heat_level
    FROM tourism_spots 
    WHERE city_name IS NOT NULL AND rating_score > 0
    GROUP BY city_name
    ORDER BY total_visitors DESC, avg_rating DESC
    """
    city_heat_result = spark.sql(city_heat_query)
    heat_distribution = city_heat_result.groupBy("heat_level").agg(count("*").alias("city_count"), avg("avg_rating").alias("level_avg_rating")).collect()
    city_ranking = city_heat_result.limit(20).toPandas()
    city_ranking['heat_score'] = city_ranking['total_visitors'] * 0.6 + city_ranking['avg_rating'] * city_ranking['spot_count'] * 0.4
    city_ranking = city_ranking.sort_values('heat_score', ascending=False)
    result_data = {
        'city_ranking': city_ranking.to_dict('records'),
        'heat_distribution': [{'level': row['heat_level'], 'count': row['city_count'], 'avg_rating': round(row['level_avg_rating'], 2)} for row in heat_distribution],
        'total_cities': city_heat_result.count(),
        'top_city': city_ranking.iloc[0].to_dict() if not city_ranking.empty else {}
    }
    return JsonResponse(result_data)
@csrf_exempt
def scenic_feature_analysis(request):
    scenic_data = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/tourism_db").option("dbtable", "scenic_spots").option("user", "root").option("password", "123456").load()
    feature_data = scenic_data.select("spot_name", "spot_type", "rating_score", "visitor_count", "ticket_price", "opening_hours", "facilities_score", "service_score", "environment_score")
    feature_data.createOrReplaceTempView("scenic_features")
    type_analysis_query = """
    SELECT spot_type,
           COUNT(*) as type_count,
           AVG(rating_score) as avg_type_rating,
           AVG(visitor_count) as avg_visitors,
           AVG(ticket_price) as avg_type_price,
           AVG(facilities_score) as avg_facilities,
           AVG(service_score) as avg_service,
           AVG(environment_score) as avg_environment,
           STDDEV(rating_score) as rating_stddev
    FROM scenic_features
    WHERE spot_type IS NOT NULL AND rating_score > 0
    GROUP BY spot_type
    ORDER BY avg_type_rating DESC, type_count DESC
    """
    type_features = spark.sql(type_analysis_query)
    price_range_query = """
    SELECT CASE 
           WHEN ticket_price = 0 THEN '免费景点'
           WHEN ticket_price <= 50 THEN '低价景点'
           WHEN ticket_price <= 150 THEN '中价景点'
           ELSE '高价景点' END as price_range,
           COUNT(*) as range_count,
           AVG(rating_score) as range_avg_rating,
           AVG(visitor_count) as range_avg_visitors
    FROM scenic_features
    WHERE ticket_price >= 0
    GROUP BY CASE 
           WHEN ticket_price = 0 THEN '免费景点'
           WHEN ticket_price <= 50 THEN '低价景点'
           WHEN ticket_price <= 150 THEN '中价景点'
           ELSE '高价景点' END
    ORDER BY range_avg_rating DESC
    """
    price_features = spark.sql(price_range_query)
    correlation_data = feature_data.select("rating_score", "facilities_score", "service_score", "environment_score", "ticket_price").toPandas()
    correlation_matrix = correlation_data.corr()
    feature_importance = {
        'facilities_rating_corr': float(correlation_matrix.loc['rating_score', 'facilities_score']),
        'service_rating_corr': float(correlation_matrix.loc['rating_score', 'service_score']),
        'environment_rating_corr': float(correlation_matrix.loc['rating_score', 'environment_score']),
        'price_rating_corr': float(correlation_matrix.loc['rating_score', 'ticket_price'])
    }
    result_data = {
        'type_analysis': type_features.toPandas().to_dict('records'),
        'price_range_analysis': price_features.toPandas().to_dict('records'),
        'feature_correlation': feature_importance,
        'total_spots_analyzed': feature_data.count()
    }
    return JsonResponse(result_data)
@csrf_exempt
def price_correlation_analysis(request):
    correlation_data = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/tourism_db").option("dbtable", "scenic_spots").option("user", "root").option("password", "123456").load()
    price_analysis_data = correlation_data.select("spot_name", "city_name", "spot_type", "ticket_price", "rating_score", "visitor_count", "facilities_score", "service_score", "environment_score", "transportation_score")
    price_analysis_data.createOrReplaceTempView("price_correlation")
    price_rating_query = """
    SELECT city_name,
           AVG(ticket_price) as avg_city_price,
           AVG(rating_score) as avg_city_rating,
           COUNT(*) as city_spot_count,
           CORR(ticket_price, rating_score) as price_rating_correlation,
           CASE WHEN AVG(ticket_price) > 100 AND AVG(rating_score) > 4.0 THEN '高价高质'
                WHEN AVG(ticket_price) <= 50 AND AVG(rating_score) > 4.0 THEN '低价高质'
                WHEN AVG(ticket_price) > 100 AND AVG(rating_score) <= 4.0 THEN '高价低质'
                ELSE '价质平衡' END as price_quality_type
    FROM price_correlation
    WHERE ticket_price > 0 AND rating_score > 0 AND city_name IS NOT NULL
    GROUP BY city_name
    HAVING COUNT(*) >= 3
    ORDER BY price_rating_correlation DESC
    """
    city_price_correlation = spark.sql(price_rating_query)
    visitor_price_query = """
    SELECT spot_type,
           AVG(ticket_price) as avg_type_price,
           AVG(visitor_count) as avg_type_visitors,
           CORR(ticket_price, visitor_count) as price_visitor_correlation,
           COUNT(*) as type_spot_count,
           PERCENTILE_APPROX(ticket_price, 0.5) as median_price,
           PERCENTILE_APPROX(visitor_count, 0.5) as median_visitors
    FROM price_correlation
    WHERE ticket_price > 0 AND visitor_count > 0 AND spot_type IS NOT NULL
    GROUP BY spot_type
    HAVING COUNT(*) >= 5
    ORDER BY price_visitor_correlation DESC
    """
    type_price_correlation = spark.sql(visitor_price_query)
    comprehensive_correlation_data = price_analysis_data.filter((col("ticket_price") > 0) & (col("rating_score") > 0) & (col("visitor_count") > 0)).toPandas()
    price_factors_correlation = comprehensive_correlation_data[['ticket_price', 'rating_score', 'visitor_count', 'facilities_score', 'service_score', 'environment_score', 'transportation_score']].corr()['ticket_price']
    elasticity_analysis = comprehensive_correlation_data.groupby(pd.cut(comprehensive_correlation_data['ticket_price'], bins=5, labels=['极低价', '低价', '中价', '高价', '极高价'])).agg({
        'visitor_count': 'mean',
        'rating_score': 'mean',
        'facilities_score': 'mean'
    }).reset_index()
    price_sensitivity = {}
    for i, price_range in enumerate(['极低价', '低价', '中价', '高价', '极高价']):
        if i < len(elasticity_analysis):
            price_sensitivity[price_range] = {
                'avg_visitors': float(elasticity_analysis.iloc[i]['visitor_count']),
                'avg_rating': float(elasticity_analysis.iloc[i]['rating_score']),
                'avg_facilities': float(elasticity_analysis.iloc[i]['facilities_score'])
            }
    result_data = {
        'city_price_analysis': city_price_correlation.toPandas().to_dict('records'),
        'type_price_analysis': type_price_correlation.toPandas().to_dict('records'),
        'price_factors_correlation': {factor: float(correlation) for factor, correlation in price_factors_correlation.items()},
        'price_elasticity': price_sensitivity,
        'analysis_summary': {
            'total_analyzed_spots': comprehensive_correlation_data.shape[0],
            'avg_price': float(comprehensive_correlation_data['ticket_price'].mean()),
            'price_variance': float(comprehensive_correlation_data['ticket_price'].var())
        }
    }
    return JsonResponse(result_data)

基于大数据的旅游上榜景点数据可视化分析系统文档展示

在这里插入图片描述

💖💖作者:计算机编程小咖
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值