函数递归详解(含汉诺塔动图演示)
目录
一、什么是递归?
递归(Recursion)是程序设计中非常经典的一种思想。简单来说,递归就是函数调用它自己。
递归的核心思想是:
把一个大问题转化为规模较小、形式相似的子问题,再逐步求解,直到问题不可再分。
例如:
#include <stdio.h>
int test()
{
printf("hehe\n");
test(); // test函数中再次调用 test 函数
return 0;
}
虽然这段代码能展示“函数调用自己”,但它没有终止条件,会导致死递归和栈溢出 (Stack Overflow)。
所以在编写递归函数时,必须控制递归的深度
和出口
。
二、递归的两个必要条件
- 必须存在终止条件(即边界条件)
当满足该条件时,递归停止。 - 每一次递归都要让问题更接近终止条件
否则会无限循环。
这两个条件是编写递归函数的关键。
三、递归经典示例
示例 1:计算 n 的阶乘
数学定义: n! = n × (n - 1)!
当 n = 1 时,n!= 1。
代码实现:
int Fact(int n)
{
if (n <= 0)
return 1;
else
return n * Fact(n - 1);
}
递归过程分析(以 Fact(5)
为例):
Fact(5)
= 5 * Fact(4)
= 5 * 4 * Fact(3)
= 5 * 4 * 3 * Fact(2)
= 5 * 4 * 3 * 2 * Fact(1)
= 5 * 4 * 3 * 2 * 1
示例 2:顺序打印整数的每一位
需求:
输入整数 1234
,按顺序输出 1 2 3 4
递归分析:
- 若
n > 9
,先打印n / 10
的各位; - 然后再打印当前最后一位
n % 10
。
代码实现:
void Print(int n)
{
if (n > 9)
Print(n / 10);
printf("%d ", n % 10);
}
执行流程(以 Print(1234)
为例):
Print(1234)
→ Print(123)
→ Print(12)
→ Print(1)
→ 打印 1 → 打印 2 → 打印 3 → 打印 4
四、递归与迭代的比较
递归虽然简洁优雅,但也存在一定的性能开销。
在每次函数调用时,系统都会为该函数分配栈帧,用于保存局部变量和返回地址。
如果递归层数过多,会造成 栈溢出 (stack overflow)。
例如计算斐波那契数列:
int Fib(int n) {
if (n <= 2)
return 1;
else
return Fib(n-1) + Fib(n-2);
}
当输入 Fib(40)
时,重复计算次数极多,效率极低。
而迭代方式的效率更高:
int Fib(int n)
{
int a = 1, b = 1, c = 1;
while (n > 2)
{
c = a + b;
a = b;
b = c;
n--;
}
return c;
}
总结:
- 当问题结构清晰、规模适中时,递归可简化逻辑。
- 当问题规模较大时,优先考虑迭代(循环)以提高效率。
五、递归进阶:汉诺塔问题(Hanoi Tower)
问题描述:
有三根柱子 A、B、C,A 柱上有若干不同大小的圆盘,要求将所有圆盘从 A 移动到 C,且:
- 一次只能移动一个圆盘;
- 大圆盘不能压在小圆盘上;
- 可以借助中间的柱子 B。
1、当只有一个盘子时,直接移动
2、当有两个盘子时,先将上面的盘子挪走,但不要占目的位置,然后将最大的放至目的位置,再将次小的放在目的位置
3、有三个及以上的盘子的时候,一步一步推有点慢,可以从之前的移动中找规律,可以发现每次都是将最大的盘子上面所有的盘子,移至一个既不是初始位置也不是目的位置的柱子上,然后直接将最大的盘子一步到位,剩下的也是如此。只不过需要注意的是假设刚开始有ABC三个柱子,将除最大盘子外的所有盘子挪到中转柱子时,此时中转柱子是第二个柱子,也就是B柱子,但如果继续挪次大的盘子,此时的中转柱子,就成了A柱子。
这里有点绕,后面有四层汉诺塔的动图,可以结合看一下
递归思路:
- 先将
n-1
个盘从 A → B; - 再将最大的盘从 A → C;
- 最后将
n-1
个盘从 B → C。
递归函数定义:
这里需要多想一下函数的三个柱子参数,可以简单理解为,第一个参数就是有很多盘子的柱子,第二个参数就是中转柱子,第三个参数就是目的柱子。不要被参数名误导!
个人理解,不对可以留言。
//打印移动路径
void print(char start, char end)
{
printf("%c->%c ", start, end);
}
//递归函数思路
void Hanoi(int n, char start, char transfor, char end)
{
if (n == 1)
print(start, end);
else
{
//将除底部盘子外的所有盘子借助目的柱子转移到中转柱子上
Hanoi(n - 1, start, end, transfor);
//将底部盘子挪至目的柱子上
print(start, end);
//将中转柱子上的其余盘子借助起始柱子挪至目的柱子上
Hanoi(n - 1, transfor, start, end);
}
}
测试代码:
int main()
{
Hanoi(1, 'A', 'B', 'C');
printf("\n");
Hanoi(2, 'A', 'B', 'C');
printf("\n");
Hanoi(3, 'A', 'B', 'C');
return 0;
}
输出示例(前 3 层汉诺塔):
六、汉诺塔递归动图演示(3层和4层)
1、三层汉诺塔递归效果演示:
2、四层汉诺塔递归效果演示:
这里就可以看出当黄色盘子挪到目的地后,空出来的柱子也就成了A柱而不是B柱。
七、总结
优点 | 缺点 |
---|---|
思路清晰,代码简洁 | 占用栈空间多 |
适合分解型问题 | 可能造成栈溢出 |
容易表达数学递推关系 | 性能不如迭代 |
递归的关键是:
找到终止条件 + 明确子问题的缩小路径
掌握了这两点,你就能轻松实现如阶乘、斐波那契、汉诺塔等各种递归问题。