在jupyter中进行
一 .需求分析
1.分析美妆商品信息,找出每个“商品小类”中价格最高的前5个商品。
2.每月订购情况,统计每个月订单的订购数量情况和消费金额。
3.按订单的地区,统计各地在订购数量上的排行情况,取最高的前20个城市。
4.按商品的类型,分别统计各美妆产品的订购数量排行,以了解产品的畅销程度和需求情况。
5.分析各省的美妆订购数量,以了解哪些地方的商品需求量最大。
6.通过RFM模型挖掘客户价值。
二、准备工作
1.数据清洗(pandas)
2.窗口操作(Spark SQL)
3.数据可视化(pyecharts)
1、数据清洗(pandas)
(0)模块库的安装
pip install pandas==1.1.5 安装pandas
pip show pandas 查看pandas版本
pip install pyecharts==1.9.0 安装pyecharts
pip install pyspark-stubs 安装pyspark-stubs
pip show pyecharts 查看pyecharts版本
pip show pyspark-stubs 查看pyspark-stubs版本
(1) 导入库
import pandas as pd
(2)加载数据文件信息
prod_info = pd.read_csv('../Stu_pack_12/beauty/beauty_prod_info.csv')
(3)查看加载进来的数据文内容
prod_info.head(10)
prod_sales = pd.read_csv('C:/Users/Administrator/Desktop/Stu_pack_12/beauty/beauty_prod_sales.csv')
prod_sales.head(10)
print(prod_sales)
print(prod_info)
(4)查看加载进来的数据文件基本信息
prod_info.info()
prod_sales.info()
(5)检查是否存在完全重复的数据行
prod_info[prod_info.duplicated()]
prod_info[prod_info.duplicated()].count()
prod_sales[prod_sales.duplicated()]
prod_sales[prod_sales.duplicated()].count()
(6)检查美妆商品信息中的“商品编号”是否存在重复值
若有重复,后面在关联两个数据文件时就会遇到问题
prod_info[prod_info['商品编号'].duplicated()]
prod_info[prod_info['商品编号'].duplicated()].count()
prod_sales[prod_sales['订单编码'].duplicated()]
(7)统计美妆商品信息数据文件是否存在“空值”字段
prod_info.isnull()
prod_info.isnull().sum()
prod_sales.isnull().sum()
至此,美妆商品信息数据文件的初步分析工作就结束了,结论是不存在数据异常的情况。
接下来继续分析美妆商品订单数据文件, 加载美妆商品订单数据文件beauty_prod_sales.csv,并查看前5行
(8)将重复数据去除并重建Pandas内部的索引,再查看重复数据是否成功去除
prod_sales.drop_duplicates(inplace=True) #删除重复的数据并保留一条 prod_sales[prod_sales.duplicated()].count() #查看是否有重复数据
prod_sales.head()
prod_sales.reset_index(drop=True,inplace=True) #重建记录的索引,确定没有重复数据
prod_sales[prod_sales.duplicated()].count()
(9)采取“bfill向后”和“ffill向前”的填充方式,即当出现“空值”时,分别参考上一条数据和下一条数据的值
prod_sales.fillna(method='bfill',inplace=True) #参考后向数据填充
prod_sales.fillna(method='ffill',inplace=True) #参考前向数据填充
prod_sales.isnull().sum()
prod_sales.info()
(10)下面对存在问题的订单日期、订购数量、订购单价这几个字段进行处理
prod_sales['订单日期'] = prod_sales['订单日期'] \ .apply(lambda x : pd.to_datetime(x,format='%Y#%m#%d') \ if isinstance(x,str) and '#' in x else x) prod_sales['订单日期'] = prod_sales['订单日期'].astype('datetime64') prod_sales['订单日期'].min() prod_sales['订单日期'].max() prod_sales['订购数量'] = prod_sales['订购数量'].apply(lambda x:x.strip('个') \ if isinstance(x,str) else x) prod_sales['订购数量'] = prod_sales['订购数量'].astype('int64') prod_sales['订购单价'] = prod_sales['订购单价'] \ .apply(lambda x:x.strip('元') if isinstance(x,str) else x) prod_sales['订购单价'] = prod_sales['订购单价'].astype('float64') prod_sales.info()