Spring Cloud助力后端系统的服务监控指标体系建设

Spring Cloud实战:手把手搭建后端服务监控指标体系——像“给服务做体检”一样简单

关键词

Spring Cloud、服务监控、指标体系、Micrometer、Prometheus、Grafana、Actuator

摘要

在微服务架构下,后端系统就像一辆高速行驶的汽车——没有仪表盘(监控指标),你永远不知道油量是否充足、发动机是否过热、轮胎压力是否正常。本文将以“给服务做体检”为类比,手把手教你用Spring Cloud生态(Actuator+Micrometer+Prometheus+Grafana)构建一套可落地的服务监控指标体系。从“为什么需要监控”到“如何选择指标”,从“工具整合”到“实战案例”,我们将用生活化的比喻、清晰的流程图和可运行的代码,帮你解决“监控无从下手”的痛点,让你的服务“健康状态”一目了然。

一、背景介绍:为什么后端服务需要“体检报告”?

1.1 微服务时代的“监控刚需”

在单体应用时代,我们可以通过日志和简单的JVM监控了解系统状态。但进入微服务时代:

  • 服务数量从“1个”变成“N个”(比如电商系统有订单、库存、支付、用户等十多个服务);
  • 调用链路从“线性”变成“网状”(一个订单请求可能经过网关、认证、库存扣减、支付等5个服务);
  • 故障影响从“局部”变成“全局”(一个服务宕机可能导致整个下单流程失败)。

此时,没有监控指标体系就像“闭着眼睛开车”——你不知道哪个服务出了问题,不知道问题有多严重,更不知道如何快速定位。

1.2 目标读者:谁需要这篇文章?

  • Spring Cloud开发人员:想给现有服务添加监控,但不知道用什么工具;
  • 后端架构师:需要设计一套标准化的监控体系,覆盖所有微服务;
  • DevOps工程师:想整合监控工具,实现“可视化+报警”的闭环。

1.3 核心挑战:我们要解决什么问题?

  • 选什么指标?:哪些指标能真正反映服务健康?(比如QPS vs 错误率 vs 延迟);
  • 用什么工具?:Spring Cloud生态中有哪些工具可以整合?(Actuator?Micrometer?Prometheus?);
  • 怎么落地?:如何从0到1搭建一套可运行的监控体系?(代码怎么写?配置怎么改?)。

二、核心概念解析:用“体检”类比监控指标体系

为了让复杂概念更易懂,我们用“医院体检”来类比服务监控:

体检环节监控对应工具/概念作用说明
体检项目选择指标体系设计选择能反映服务健康的“关键指标”(如血压=QPS,血糖=延迟)
采集血液/尿液Micrometer+Actuator从服务中“提取”指标数据(如接口调用次数、JVM内存)
存储体检数据Prometheus存储指标数据,支持多维度查询(如按服务、按环境筛选)
生成体检报告Grafana将数据可视化(如折线图看趋势,柱状图看对比)
异常报警Alertmanager(可选)当指标超过阈值时,发送报警(如错误率超过5%时发邮件)

2.1 指标体系:服务的“体检项目清单”

监控的核心是选对指标。根据Google SRE(站点可靠性工程)的理论,指标可分为四类:

  • 延迟(Latency):服务处理请求的时间(如接口响应时间);
  • 流量(Traffic):服务的请求量(如QPS、TPS);
  • 错误率(Error Rate):请求失败的比例(如HTTP 5xx错误率);
  • 饱和度(Saturation):服务的资源使用情况(如CPU使用率、内存占用、数据库连接池使用率)。

比喻:这四类指标就像体检中的“四大项”——延迟是“心率”(越快越危险),流量是“运动量”(过多或过少都不好),错误率是“白细胞计数”(越高说明有炎症),饱和度是“体重”(超标会导致各种问题)。

2.2 Micrometer:指标的“翻译官”

Micrometer是Spring Cloud推荐的指标收集工具,它的作用是“统一指标格式”。比如:

  • 对于Spring MVC的接口,Micrometer会自动收集http.server.requests指标(包含延迟、状态码等);
  • 对于JVM,Micrometer会自动收集jvm.memory.used(已用内存)、jvm.threads.live(活跃线程数)等指标;
  • 对于自定义业务指标(如订单创建次数),Micrometer提供了Counter(计数器)、Gauge( gauge)、Timer(计时器)等API。

比喻:Micrometer就像医院的“检验科医生”——不管你是血液、尿液还是粪便样本,他都会把它们转换成统一的“检验报告格式”,方便后续存储和分析。

2.3 Actuator:服务的“体检窗口”

Spring Boot Actuator是服务的内部状态暴露工具,它通过HTTP端点(如/actuator/health/actuator/metrics)暴露服务的健康状态和指标数据。而Micrometer会将收集到的指标“交给”Actuator,通过/actuator/prometheus端点暴露给Prometheus。

比喻:Actuator就像医院的“体检窗口”——你不需要进入服务内部(比如打开JVM监控工具),只要访问这个窗口,就能拿到服务的“体检数据”。

2.4 Prometheus:指标的“数据仓库”

Prometheus是开源的时序数据库(Time Series Database,TSDB),它的核心功能是:

  • 采集(Scrape):定期从Actuator的/actuator/prometheus端点拉取指标数据;
  • 存储(Store):将指标数据存储为时序数据(按时间戳排序);
  • 查询(Query):用PromQL(Prometheus Query Language)查询指标(如http_server_requests_seconds_count{status="200"}表示成功请求数)。

比喻:Prometheus就像医院的“电子病历系统”——它存储了所有服务的“体检数据”,你可以随时查询某个服务在某个时间点的指标(比如“订单服务昨天18点的QPS是多少?”)。

2.5 Grafana:指标的“可视化报告”

Grafana是开源的数据可视化工具,它可以连接Prometheus,将时序数据转换成直观的图表(如折线图、柱状图、仪表盘)。通过Grafana,你可以:

  • 实时查看服务的QPS、延迟、错误率;
  • 对比不同服务的性能(如订单服务 vs 库存服务的延迟);
  • 分析指标的趋势(如“最近一周支付服务的错误率是否在上升?”)。

比喻:Grafana就像医院的“体检报告打印机”——它把Prometheus中的“ raw数据”转换成易读的“图表报告”,让你一眼就能看出服务的“健康状况”。

2.6 数据流动流程图(Mermaid)

graph TD
    A[Spring Boot应用] -->|暴露指标| B[Actuator端点:/actuator/prometheus]
    B -->|采集| C[Prometheus]
    C -->|存储| D[时序数据库]
    D -->|查询| E[Grafana]
    E -->|可视化| F[Dashboard:QPS/延迟/错误率]
    C -->|报警| G[Alertmanager]
    G -->|通知| H[邮件/Slack/企业微信]

三、技术原理与实现:手把手搭建监控体系

接下来,我们用订单服务(Spring Boot 3.x + Spring Cloud 2023.x)为例,一步步实现监控指标体系。

3.1 步骤1:添加依赖(引入“体检工具”)

pom.xml中添加以下依赖:

<!-- Spring Boot Actuator:暴露服务状态 -->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

<!-- Micrometer:收集指标 -->
<dependency>
    <groupId>io.micrometer</groupId>
    <artifactId>micrometer-registry-prometheus</artifactId>
</dependency>

<!-- Spring Cloud LoadBalancer(可选,用于服务发现) -->
<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-loadbalancer</artifactId>
</dependency>

说明micrometer-registry-prometheus是Micrometer的Prometheus注册表,用于将指标转换为Prometheus格式。

3.2 步骤2:配置Actuator(打开“体检窗口”)

application.yml中配置Actuator:

spring:
  application:
    name: order-service # 应用名称,用于指标标签

management:
  endpoints:
    web:
      exposure:
        include: prometheus, health, metrics # 暴露的端点:prometheus(指标)、health(健康状态)、metrics(详细指标)
  metrics:
    tags:
      application: ${spring.application.name} # 给所有指标添加“application”标签,方便筛选
    distribution:
      percentiles-histogram:
        http.server.requests: true # 开启HTTP请求的直方图(用于计算P95、P99延迟)

验证:启动应用后,访问http://localhost:8080/actuator/prometheus,你会看到类似以下的指标数据(Prometheus格式):

# HELP http_server_requests_seconds HTTP Server Requests
# TYPE http_server_requests_seconds summary
http_server_requests_seconds_count{application="order-service",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/api/orders",} 10.0
http_server_requests_seconds_sum{application="order-service",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/api/orders",} 0.5
# HELP jvm_memory_used_bytes Used memory bytes
# TYPE jvm_memory_used_bytes gauge
jvm_memory_used_bytes{application="order-service",area="heap",id="PS Eden Space",} 123456789.0

3.3 步骤3:自定义业务指标(添加“个性化体检项目”)

除了自动收集的指标(如HTTP请求、JVM内存),我们还需要自定义业务指标(如订单创建次数、库存扣减成功率)。以下是用Micrometer自定义指标的示例:

3.3.1 计数器(Counter):统计订单创建次数

计数器用于统计递增的数值(如请求次数、订单数量)。代码如下:

import io.micrometer.core.instrument.Counter;
import io.micrometer.core.instrument.MeterRegistry;
import org.springframework.stereotype.Service;

@Service
public class OrderService {
    private final Counter orderCreatedCounter;

    // 通过构造函数注入MeterRegistry(Micrometer的核心组件)
    public OrderService(MeterRegistry meterRegistry) {
        this.orderCreatedCounter = Counter.builder("order.created.total") // 指标名称(必须唯一)
                .description("Total number of created orders") // 指标描述
                .tags("status", "success") // 标签(用于多维度筛选,如按状态、按用户类型)
                .register(meterRegistry); // 注册到MeterRegistry
    }

    public void createOrder(Order order) {
        // 1. 业务逻辑:创建订单(省略)
        // 2. 递增计数器
        orderCreatedCounter.increment(); // 每次调用+1
        // 如果需要递增指定数值(如批量创建订单),可以用increment(5)
    }
}

验证:调用createOrder方法后,访问http://localhost:8080/actuator/prometheus,会看到order_created_total指标:

# HELP order_created_total Total number of created orders
# TYPE order_created_total counter
order_created_total{application="order-service",status="success",} 5.0
3.3.2 计时器(Timer):统计订单创建延迟

计时器用于统计事件的持续时间(如接口响应时间、方法执行时间)。代码如下:

import io.micrometer.core.instrument.Timer;
import org.springframework.stereotype.Service;

@Service
public class OrderService {
    private final Timer orderCreateTimer;

    public OrderService(MeterRegistry meterRegistry) {
        this.orderCreateTimer = Timer.builder("order.create.duration")
                .description("Duration of order creation")
                .tags("status", "success")
                .register(meterRegistry);
    }

    public void createOrder(Order order) {
        // 用Timer记录方法执行时间
        orderCreateTimer.record(() -> {
            // 业务逻辑:创建订单(省略)
        });
    }
}

说明:Timer会自动收集以下指标:

  • order_create_duration_seconds_count:订单创建次数;
  • order_create_duration_seconds_sum:订单创建总时间;
  • order_create_duration_seconds_max:订单创建最大时间;
  • 直方图数据(用于计算P50、P95、P99延迟,如order_create_duration_seconds_bucket{le="0.1"}表示延迟≤0.1秒的次数)。
3.3.3 Gauge( gauge):统计库存剩余量

Gauge用于统计动态变化的数值(如库存剩余量、活跃用户数)。代码如下:

import io.micrometer.core.instrument.Gauge;
import org.springframework.stereotype.Service;

@Service
public class InventoryService {
    private int remainingStock = 100; // 库存剩余量(假设初始为100)

    public InventoryService(MeterRegistry meterRegistry) {
        Gauge.builder("inventory.remaining.stock", () -> remainingStock) // 指标名称和值提供者
                .description("Remaining stock of products")
                .tags("product", "iphone15") // 标签(如产品类型)
                .register(meterRegistry);
    }

    public void deductStock(int quantity) {
        if (remainingStock >= quantity) {
            remainingStock -= quantity;
        }
    }
}

验证:调用deductStock(10)后,访问http://localhost:8080/actuator/prometheus,会看到inventory_remaining_stock指标:

# HELP inventory_remaining_stock Remaining stock of products
# TYPE inventory_remaining_stock gauge
inventory_remaining_stock{application="order-service",product="iphone15",} 90.0

3.4 步骤4:配置Prometheus(存储“体检数据”)

3.4.1 下载并启动Prometheus
  1. Prometheus官网下载适合你系统的版本;
  2. 解压后,修改prometheus.yml配置文件:
    global:
      scrape_interval: 15s # 每15秒采集一次指标
      evaluation_interval: 15s # 每15秒评估一次报警规则
    
    scrape_configs:
      - job_name: 'spring-cloud-apps' # 任务名称(自定义)
        metrics_path: '/actuator/prometheus' # 指标端点(Actuator的prometheus端点)
        static_configs:
          - targets: ['localhost:8080'] # 应用的地址(如果是集群,添加多个地址)
        relabel_configs:
          - source_labels: [__address__]
            target_label: instance # 将实例地址作为标签(如localhost:8080)
    
  3. 启动Prometheus(执行./prometheusprometheus.exe);
  4. 访问http://localhost:9090,进入Prometheus UI。
3.4.2 验证数据采集

在Prometheus UI的“Expression”输入框中输入order_created_total,点击“Execute”,如果能看到指标数据(如5.0),说明采集成功。

3.5 步骤5:配置Grafana(生成“可视化报告”)

3.5.1 下载并启动Grafana
  1. Grafana官网下载适合你系统的版本;
  2. 启动Grafana(默认端口3000);
  3. 访问http://localhost:3000,用默认账号(admin/admin)登录。
3.5.2 添加Prometheus数据源
  1. 点击左侧菜单栏的“Configuration”→“Data Sources”;
  2. 点击“Add data source”,选择“Prometheus”;
  3. 在“URL”输入框中输入Prometheus的地址(如http://localhost:9090);
  4. 点击“Save & Test”,如果显示“Data source is working”,说明添加成功。
3.5.3 创建Dashboard(可视化指标)

Grafana提供了丰富的Dashboard模板,我们可以用Spring Boot 2.1+ Statistics模板(ID:10280)快速创建订单服务的监控面板:

  1. 点击左侧菜单栏的“Dashboards”→“Import”;
  2. 在“Import via grafana.com”输入框中输入10280,点击“Load”;
  3. 选择刚才添加的Prometheus数据源,点击“Import”;
  4. 进入Dashboard,你会看到以下可视化图表:
    • HTTP请求数(QPS);
    • HTTP请求延迟(P50、P95、P99);
    • JVM内存使用情况;
    • 自定义指标(如order_created_total)。

自定义Dashboard:如果模板不符合需求,你可以手动添加图表。比如,添加一个“订单创建次数”的折线图:

  1. 点击Dashboard右上角的“Add panel”→“Add new panel”;
  2. 在“Query”标签中,输入PromQL查询语句:sum(increase(order_created_total{application="order-service"}[1m])) by (status)(表示每分钟的订单创建次数,按状态分组);
  3. 在“Visualization”标签中选择“Line chart”(折线图);
  4. 点击“Apply”,保存面板。

3.6 步骤6:配置Alertmanager(添加“异常报警”)

监控的最终目的是提前发现问题,因此需要配置报警。Alertmanager是Prometheus的报警组件,它可以将Prometheus的报警规则转换为通知(如邮件、Slack、企业微信)。

3.6.1 下载并启动Alertmanager
  1. Alertmanager官网下载适合你系统的版本;
  2. 解压后,修改alertmanager.yml配置文件(以邮件报警为例):
    global:
      smtp_smarthost: 'smtp.qq.com:587' # 邮件服务器地址(QQ邮箱示例)
      smtp_from: 'your-email@qq.com' # 发件人邮箱
      smtp_auth_username: 'your-email@qq.com' # 邮箱账号
      smtp_auth_password: 'your-email-password' # 邮箱密码(或授权码)
    
    route:
      group_by: ['alertname'] # 按报警名称分组
      group_wait: 30s # 分组等待时间(避免重复报警)
      group_interval: 5m # 分组间隔时间
      repeat_interval: 1h # 重复报警间隔时间
      receiver: 'email-receiver' # 接收者名称
    
    receivers:
      - name: 'email-receiver'
        email_configs:
          - to: 'your-target-email@example.com' # 收件人邮箱
            send_resolved: true # 发送恢复通知
    
  3. 启动Alertmanager(执行./alertmanageralertmanager.exe);
  4. 访问http://localhost:9093,进入Alertmanager UI。
3.6.2 添加报警规则(Prometheus)

在Prometheus的prometheus.yml中添加报警规则文件的路径:

rule_files:
  - 'alert.rules.yml' # 报警规则文件

创建alert.rules.yml文件,添加以下报警规则(以订单服务错误率超过5%为例):

groups:
  - name: order-service-alerts
    rules:
      - alert: HighErrorRate
        expr: sum(increase(http_server_requests_seconds_count{application="order-service",status=~"5.."}[1m])) / sum(increase(http_server_requests_seconds_count{application="order-service"}[1m])) > 0.05
        for: 1m # 持续1分钟超过阈值才报警
        labels:
          severity: critical # 报警级别(critical/ warning/ info)
        annotations:
          summary: "High error rate in order service" # 报警摘要
          description: "Error rate is {{ $value | round(2) }}% (超过5%的阈值)。请检查服务日志。" # 报警描述(使用模板变量)

说明expr中的PromQL语句表示“过去1分钟内,5xx错误的请求数占总请求数的比例超过5%”。

3.6.3 验证报警

故意让订单服务返回5xx错误(如修改接口代码,抛出异常),等待1分钟后,Alertmanager会发送邮件报警。邮件内容类似:

Summary: High error rate in order service
Description: Error rate is 6.2% (超过5%的阈值)。请检查服务日志。

四、实际应用:电商订单服务监控案例

4.1 案例背景

某电商平台的订单服务(order-service)是核心服务之一,需要监控以下指标:

  • 业务指标:订单创建次数(order.created.total)、订单支付成功率(order.paid.success.rate);
  • 应用指标:HTTP请求延迟(http.server.requests)、JVM内存使用率(jvm.memory.used);
  • 系统指标:CPU使用率(system.cpu.usage)、数据库连接池使用率(hikaricp.connections.used)。

4.2 实现步骤

  1. 添加依赖:如3.1节所示,添加Actuator、Micrometer、Prometheus依赖;
  2. 配置Actuator:如3.2节所示,暴露prometheus端点,并添加application标签;
  3. 自定义业务指标
    • Counter统计订单创建次数(order.created.total);
    • Gauge统计订单支付成功率(order.paid.success.rate,计算方式:成功支付次数/总支付次数);
  4. 配置Prometheus:如3.4节所示,添加order-service的采集配置;
  5. 配置Grafana:如3.5节所示,使用模板或自定义Dashboard,展示以上指标;
  6. 配置报警规则:如3.6节所示,添加以下报警规则:
    • 订单创建延迟超过1秒(order.create.duration_seconds_p95 > 1);
    • 订单支付成功率低于90%(order.paid.success.rate < 0.9);
    • JVM内存使用率超过80%(jvm.memory.used.percent > 0.8)。

4.3 效果展示(Grafana Dashboard)

以下是订单服务的Grafana Dashboard截图(简化版):

  • 顶部面板:显示当前QPS、错误率、延迟P95;
  • 中间面板:显示订单创建次数的趋势(折线图);
  • 底部面板:显示JVM内存使用率、CPU使用率、数据库连接池使用率(柱状图)。

4.4 常见问题及解决方案

4.4.1 问题1:指标数据丢失

现象:Prometheus中看不到某个指标(如order.created.total)。
原因

  • Actuator未暴露prometheus端点(management.endpoints.web.exposure.include未包含prometheus);
  • Prometheus的scrape_configs中的targets配置错误(如地址或端口错误);
  • 自定义指标未注册到MeterRegistry(如构造函数未注入MeterRegistry)。
    解决方案:检查以上配置,确保Actuator端点暴露正确,Prometheus采集地址正确,自定义指标注册正确。
4.4.2 问题2:指标太多导致性能问题

现象:应用启动慢,或请求延迟增加。
原因:自定义了大量指标(如每个请求都生成一个新指标),或标签数量过多(如每个用户都作为标签)。
解决方案

  • 合并指标(如将“用户A的订单数”和“用户B的订单数”合并为“订单数”,用标签user_id区分,但避免过多标签);
  • 减少标签数量(标签数量越多,Prometheus的存储和查询压力越大,建议标签数量不超过5个);
  • 使用MicrometerMeterFilter过滤不需要的指标(如过滤掉jvm.gc.*指标)。
4.4.3 问题3:可视化效果不好

现象:Grafana中的图表看不清趋势,或数据不准确。
原因

  • 选择了错误的图表类型(如用柱状图显示趋势,应该用折线图);
  • PromQL查询语句错误(如increase函数的时间范围设置不当);
  • 指标的标签不一致(如不同服务的application标签值不同,导致无法聚合)。
    解决方案
  • 选择合适的图表类型(趋势用折线图,对比用柱状图,比例用饼图);
  • 正确使用PromQL函数(如increase用于计算增量,rate用于计算速率);
  • 统一指标的标签(如所有服务都用application标签,值为spring.application.name)。

五、未来展望:监控指标体系的发展趋势

5.1 趋势1:可观察性(Observability)整合

随着云原生的发展,可观察性(Metrics + Logs + Traces)成为监控的主流。Spring Cloud生态也在向这个方向整合:

  • Metrics:Micrometer + Prometheus;
  • Logs:Logback + ELK(Elasticsearch + Logstash + Kibana)或 Loki + Grafana;
  • Traces:OpenTelemetry + Jaeger或 Zipkin。

未来,Spring Cloud将提供更无缝的可观察性整合(如Spring Cloud Tencent的Monitor模块),让开发人员可以通过一个Dashboard查看指标、日志和调用链。

5.2 趋势2:AI驱动的异常检测

传统的报警规则是阈值-based(如错误率超过5%报警),但这种方式存在以下问题:

  • 阈值设置困难(过高会遗漏问题,过低会导致误报警);
  • 无法应对复杂的异常(如“QPS突然下降,但错误率正常”)。

未来,AI驱动的异常检测将成为趋势。比如,用机器学习模型(如孤立森林、LSTM)学习指标的正常模式,当指标偏离正常模式时自动报警。Spring Cloud生态中的Spring Cloud AI模块(即将发布)可能会提供这样的功能。

5.3 趋势3:指标标准化(OpenMetrics)

目前,不同的监控工具(如Prometheus、InfluxDB)使用不同的指标格式,导致整合困难。OpenMetrics(开源的指标格式标准)的出现,将解决这个问题。未来,Spring Cloud的Micrometer将更全面地支持OpenMetrics,让指标可以在不同工具之间无缝迁移。

六、总结与思考

6.1 总结要点

  • 为什么要做监控?:微服务时代,监控是保证服务高可用的关键,就像汽车的仪表盘;
  • 用什么工具?:Spring Cloud生态中的Actuator(暴露指标)、Micrometer(收集指标)、Prometheus(存储指标)、Grafana(可视化指标)是构建监控体系的核心工具;
  • 怎么落地?:步骤是“添加依赖→配置Actuator→自定义指标→配置Prometheus→配置Grafana→配置报警”;
  • 注意事项:选对指标(SRE的四大类指标)、统一标签(如application)、优化性能(减少指标和标签数量)。

6.2 思考问题

  • 你所在的项目中,最核心的三个业务指标是什么?为什么选择它们?
  • 如何利用监控数据优化服务性能?(比如,通过延迟指标发现某个接口的性能瓶颈)
  • 如何平衡监控的全面性和性能?(比如,哪些指标可以省略?哪些指标必须保留?)

6.3 参考资源

结尾

监控指标体系不是“一次性工程”,而是“持续优化的过程”。随着业务的发展,你需要不断调整指标(比如新增“优惠券使用次数”指标)、优化报警规则(比如调整错误率的阈值)、升级工具(比如从Prometheus 2.x升级到3.x)。希望本文能给你一个清晰的起点,让你的服务“体检”变得简单、高效。

如果你有任何问题或建议,欢迎在评论区留言,我们一起讨论!

作者:AI技术专家与教育者
日期:2024年XX月XX日
版权:本文为原创内容,未经许可不得转载。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值