Stable Diffusion 生成插画:儿童绘本创作新方式

Stable Diffusion 生成插画:儿童绘本创作新方式

关键词:Stable Diffusion、儿童绘本、AI插画生成、文本到图像模型、深度学习、创作流程、应用场景

摘要:本文深入探讨Stable Diffusion技术在儿童绘本创作中的创新应用,解析其核心技术原理、创作流程优化及实战案例。通过对比传统插画创作模式,揭示AI如何突破效率瓶颈,实现创意快速可视化。结合数学模型、代码实现与实际应用场景,展示从提示词设计到图像精修的完整工作流,为插画师、绘本作者及教育从业者提供可落地的技术方案,推动儿童绘本创作进入智能化时代。

1. 背景介绍

1.1 目的和范围

儿童绘本作为重要的启蒙载体,对插画的艺术性、叙事性和视觉吸引力提出极高要求。传统创作流程中,插画师需耗费大量时间进行草图绘制、色彩调整和场景构图,创意落地效率受限于手工绘制的物理成本。Stable Diffusion作为开源文本到图像生成模型,通过深度学习技术将文本描述转化为高质量图像,为儿童绘本创作提供了革命性工具。
本文聚焦Stable Diffusion在儿童绘本场景中的技术适配、创作流程重构及实际应用,涵盖核心原理解析、算法实现细节、实战案例演示及行业应用展望,帮助创作者快速掌握AI辅助绘本创作的关键技术。

1.2 预期读者

  • 插画师与绘本作者:希望借助AI提升创作效率,拓展艺术表现形式
  • 教育从业者:探索数字化内容生产在儿童教育领域的应用
  • AI技术爱好者:关注生成式AI在垂直领域的落地实践
  • 出版行业从业者:寻求内容生产流程的智能化改造方案

1.3 文档结构概述

  1. 技术原理:解析Stable Diffusion的扩散模型架构与儿童绘本适配性
  2. 创作流程:构建从创意构思到图像精修的全链路工作流
  3. 实战指南:通过代码案例演示完整生成过程,包括提示词设计与参数调优
  4. 应用场景:分类讨论角色设计、场景构建、分镜创作等具体应用
  5. 工具资源:推荐专业级辅助工具与学习资源,助力技术落地

1.4 术语表

1.4.1 核心术语定义
  • Stable Diffusion:基于潜在扩散模型(Latent Diffusion Model, LDM)的文本到图像生成模型,通过在低维潜在空间进行扩散运算提升效率
  • 提示词(Prompt):用户输入的文本描述,用于指导模型生成符合预期的图像,是控制生成效果的关键要素
  • 反向扩散(Reverse Diffusion):扩散模型的核心过程,通过神经网络逐步去除噪声,从随机噪声中重建清晰图像
  • ControlNet:深度学习框架,可对Stable Diffusion添加额外控制条件(如线稿、姿势图),实现更精准的生成控制
1.4.2 相关概念解释
  • 扩散模型(Diffusion Model):通过模拟数据在噪声中逐渐退化(前向扩散)及恢复(反向扩散)的过程进行生成建模,相比GAN等模型具有更高的生成质量和多样性
  • 潜在空间(Latent Space):高维图像数据经编码器压缩后的低维表示,Stable Diffusion在此空间进行扩散运算,将计算复杂度从像素级降至潜在级
  • 超分辨率(Super-Resolution):通过算法提升图像分辨率,解决生成图像尺寸受限问题,常用技术包括ESRGAN、Real-ESRGAN
1.4.3 缩略词列表
缩写全称说明
LDMLatent Diffusion Model潜在扩散模型
UNetU-Net Neural Network用于图像分割和生成的对称U型神经网络
CLIPContrastive Language-Image Pre-Training跨模态对比学习模型,用于文本-图像匹配

2. 核心概念与联系

2.1 Stable Diffusion技术架构解析

Stable Diffusion的核心架构由文本编码器潜在空间扩散模型图像解码器三部分组成,形成“文本输入-潜在空间处理-图像输出”的完整链路。

2.1.1 文本编码器(CLIP Text Encoder)

采用CLIP模型的文本编码器,将用户输入的提示词转换为维度为768的文本嵌入向量(Text Embedding)。该向量包含文本的语义信息和情感特征,作为扩散模型的条件输入指导图像生成。

2.1.2 潜在空间扩散模型
  • 编码器(Encoder):将原始图像(512x512像素)通过卷积神经网络压缩为维度64x64x4的潜在张量(Latent Tensor),将像素级运算转换为潜在级运算,计算效率提升约100倍
  • UNet扩散网络:核心处理单元,采用含时间嵌入(Time Embedding)的U型网络结构,在反向扩散过程中根据文本嵌入和时间步信息逐步去噪。网络包含交叉注意力层(Cross-Attention),实现文本信息对图像生成的全局控制
  • 解码器(Decoder):将去噪后的潜在张量还原为像素空间图像
2.1.3 架构示意图(Mermaid流程图)
用户提示词
CLIP文本编码器
文本嵌入向量
原始图像
图像编码器
潜在张量
随机噪声
时间步信息
UNet扩散网络
去噪潜在张量
图像解码器
生成图像

2.2 儿童绘本创作的核心需求与技术适配

创作需求传统方案挑战Stable Diffusion解决方案
角色多样性手工绘制角色变体耗时通过提示词调整角色特征(年龄、发型、服饰)快速生成变体
场景一致性多图场景色调/风格难统一使用风格提示词(如“水彩风格”“扁平插画”)确保系列图一致性
分镜效率分镜构图修改成本高基于文本描述快速生成不同视角分镜,支持批量迭代
色彩适配人工调色试错成本高通过“柔和色彩”“高饱和度”等关键词精准控制色彩方案

2.3 传统创作vs AI辅助创作流程对比

graph LR
    subgraph 传统流程
    a1[创意构思] --> a2[草图绘制]
    a2 --> a3[线稿细化]
    a3 --> a4[色彩填充]
    a4 --> a5[细节调整]
    end

    subgraph AI辅助流程
    b1[提示词设计] --> b2[AI生成初稿]
    b2 --> b3[图像精修(ControlNet/PS)]
    b3 --> b4[批量生成变体]
    end

核心优势:AI将“从无到有”的绘制过程转化为“从有到优”的筛选优化过程,创作重心从技术实现转向创意设计

3. 核心算法原理 & 具体操作步骤

3.1 扩散模型数学基础

3.1.1 前向扩散过程(Forward Diffusion)

假设初始图像为 ( x_0 ),通过逐步添加高斯噪声,在 ( T ) 个时间步后变为纯噪声 ( x_T )。任意时间步 ( t ) 的图像分布满足:
q ( x t ∣ x t − 1 ) = N ( x t ; 1 − β t x t − 1 , β t I ) q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I) q(xtxt1)=N(xt;1βt xt1,βtI)
其中 ( \beta_t ) 为噪声方差调度参数,通常设为随时间递增的序列(如线性增长)。
根据重参数化技巧,可直接从 ( x_0 ) 计算 ( x_t ):
x t = α t x 0 + 1 − α t ϵ , α t = ∏ s = 1 t ( 1 − β s ) x_t = \sqrt{\alpha_t}x_0 + \sqrt{1-\alpha_t}\epsilon, \quad \alpha_t = \prod_{s=1}^t (1-\beta_s) xt=αt x0+1αt ϵ,αt=s=1t(1βs)
( \epsilon ) 为标准正态分布噪声。

3.1.2 反向扩散过程(Reverse Diffusion)

目标是学习条件分布 ( p(x_{t-1} | x_t, c) ),其中 ( c ) 为文本嵌入条件。通过神经网络 ( \epsilon_\theta(x_t, t, c) ) 预测噪声,进而计算重建分布:
p ( x t − 1 ∣ x t , c ) = N ( x t − 1 ; μ θ ( x t , t , c ) , σ t 2 I ) p(x_{t-1} | x_t, c) = \mathcal{N}(x_{t-1}; \mu_\theta(x_t, t, c), \sigma_t^2 I) p(xt1xt,c)=N(xt1;μθ(xt,t,c),σt2I)
其中均值 ( \mu_\theta ) 可表示为:
μ θ = 1 α t ( x t − 1 − α t 1 − α ˉ t ϵ θ ) \mu_\theta = \frac{1}{\sqrt{\alpha_t}} \left( x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta \right) μθ=αt 1(xt1αˉt 1αtϵθ)
( \bar{\alpha}t = \prod{s=1}^t \alpha_s ) 为累积衰减因子。

3.2 Stable Diffusion优化策略

3.2.1 潜在空间扩散

将图像编码到潜在空间 ( z \in \mathbb{R}^{H \times W \times C} )(通常H=W=64, C=4),前向/反向扩散在潜在空间进行,计算量从像素级 ( 512^2 \times 3 ) 降至潜在级 ( 64^2 \times 4 ),效率提升约100倍。

3.2.2 文本条件注入

通过交叉注意力机制,将文本嵌入向量与UNet中的空间特征图进行交互,实现文本对图像生成的全局控制。具体实现为:在UNet的每个注意力层,将文本嵌入与空间特征进行点积运算,生成注意力权重。

3.3 Python代码实现扩散过程(简化版)

import torch
import numpy as np

# 定义噪声调度参数
def get_schedule(T=1000, schedule_type='linear'):
    if schedule_type == 'linear':
        beta_start, beta_end = 0.0001, 0.02
        beta = torch.linspace(beta_start, beta_end, T)
    alpha = 1 - beta
    alpha_bar = torch.cumprod(alpha, dim=0)
    return beta, alpha, alpha_bar

# 前向扩散:x0 -> xt
def forward_diffusion(x0, t, alpha_bar):
    eps = torch.randn_like(x0)
    xt = torch.sqrt(alpha_bar[t]) * x0 + torch.sqrt(1 - alpha_bar[t]) * eps
    return xt, eps

# 反向扩散:xt -> x0(简化版,未含文本条件)
def reverse_diffusion(xt, t, alpha, alpha_bar, model):
    beta_t = 1 - alpha[t]
    sqrt_alpha = torch.sqrt(alpha[t])
    sqrt_one_minus_alpha_bar = torch.sqrt(1 - alpha_bar[t])
    
    eps_theta = model(xt, t)  # 假设model输出预测噪声
    mean = (1 / sqrt_alpha) * (xt - (beta_t / sqrt_one_minus_alpha_bar) * eps_theta)
    noise = torch.randn_like(xt) if t > 0 else 0
    x_prev = mean + torch.sqrt(beta_t) * noise
    return x_prev

# 简化的UNet模型(仅示意结构)
class SimpleUNet(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv = torch.nn.Conv2d(4, 4, 3, padding=1)
    
    def forward(self, x, t):
        t_emb = t.view(-1, 1, 1, 1).repeat(1, x.shape[1], x.shape[2], x.shape[3])
        x = torch.cat([x, t_emb], dim=1)
        return self.conv(x)

4. 数学模型和公式 & 详细讲解 & 举例说明

4.1 提示词与生成效果的数学关联

提示词通过CLIP模型转化为文本嵌入向量 ( c \in \mathbb{R}^{768} ),该向量与UNet中的空间特征 ( z \in \mathbb{R}^{H \times W \times C} ) 通过交叉注意力机制交互:
Attention ( Q , K , V ) = Softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{Softmax}\left( \frac{QK^T}{\sqrt{d_k}} \right) V Attention(Q,K,V)=Softmax(dk QKT)V
其中 ( Q ) 为空间特征的查询向量,( K, V ) 为文本嵌入的键和值向量。通过这种交互,文本语义信息被编码到图像生成过程中。

举例:当提示词包含“穿着红色裙子的小女孩”时,CLIP模型会提取“红色”“裙子”“小女孩”等语义特征,交叉注意力机制会在生成图像的对应区域(如人物躯干)强化这些特征的表达。

4.2 噪声调度参数对生成的影响

噪声方差调度参数 ( \beta_t ) 决定了扩散过程的噪声增长速率,常用调度策略包括:

  • 线性调度:( \beta_t = \beta_{\text{start}} + t(\beta_{\text{end}} - \beta_{\text{start}})/T )
  • 余弦调度:( \beta_t = 1 - \frac{\alpha_t}{\alpha_{t-1}}, \quad \alpha_t = \cos\left( \frac{t/T + s}{1 + s} \pi/2 \right)^2 )(s为平滑参数)

实验对比

  • 线性调度生成图像细节更丰富,适合儿童绘本的细腻风格
  • 余弦调度生成图像结构更稳定,适合需要严格构图的分镜场景

4.3 条件生成的数学推导(含文本条件)

反向扩散过程的条件分布可表示为:
p ( x t − 1 ∣ x t , c ) = N ( x t − 1 ; 1 α t ( x t − 1 − α t 1 − α ˉ t ϵ θ ( x t , t , c ) ) , σ t 2 I ) p(x_{t-1} | x_t, c) = \mathcal{N}\left( x_{t-1}; \frac{1}{\sqrt{\alpha_t}} \left( x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(x_t, t, c) \right), \sigma_t^2 I \right) p(xt1xt,c)=N(xt1;αt 1(xt1αˉt 1αtϵθ(xt,t,c)),σt2I)
其中 ( \epsilon_\theta(x_t, t, c) ) 为含文本条件的噪声预测网络。文本条件 ( c ) 通过交叉注意力层融入网络,使生成过程受提示词语义约束。

5. 项目实战:代码实际案例和详细解释说明

5.1 开发环境搭建

5.1.1 硬件要求
  • GPU:NVIDIA显卡(推荐RTX 3060及以上,显存≥8GB)
  • CPU:6核以上处理器
  • 内存:16GB+
5.1.2 软件安装
# 安装PyTorch(含CUDA支持)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

# 安装Stable Diffusion库
pip install diffusers transformers accelerate

# 安装图像后处理库
pip install PIL numpy matplotlib
5.1.3 模型加载
from diffusers import StableDiffusionPipeline

model_id = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")  # 加载到GPU

5.2 源代码详细实现和代码解读

5.2.1 基础生成函数
def generate_image(prompt, num_images=1, seed=None, guidance_scale=7.5, height=512, width=512):
    if seed is not None:
        torch.manual_seed(seed)
    
    images = pipe(
        prompt=prompt,
        num_images_per_prompt=num_images,
        guidance_scale=guidance_scale,
        height=height,
        width=width
    ).images
    
    return images
  • 参数解析
    • guidance_scale:分类器引导尺度,值越高图像越贴近提示词(建议5-10)
    • seed:随机种子,固定后可复现相同图像
    • height/width:生成图像尺寸(需为64的倍数,默认512x512)
5.2.2 儿童绘本角色生成案例
# 提示词设计:可爱的兔子侦探,戴着圆框眼镜,穿着棕色风衣,手持放大镜,水彩风格,柔和色彩
prompt = "A cute rabbit detective, round glasses, brown trench coat, holding a magnifying glass, watercolor style, soft colors"

# 生成3张变体图
images = generate_image(prompt, num_images=3, seed=42)

# 保存图像
for i, img in enumerate(images):
    img.save(f"rabbit_detective_{i+1}.png")
5.2.3 分镜场景生成(含视角控制)
# 提示词:森林中的小木屋,清晨阳光透过树叶,松鼠在门前觅食,低角度拍摄,3D渲染质感
prompt = "A small wooden house in the forest, morning sunlight through the leaves, squirrels foraging in front of the door, low-angle shot, 3D rendering"

# 调整生成参数(增加细节)
images = generate_image(
    prompt,
    guidance_scale=8.5,
    height=640,  # 非正方形分镜
    width=480
)

5.3 代码解读与分析

5.3.1 提示词工程核心技巧
  1. 主体描述顺序:遵循“主体-特征-风格-场景”结构,如“穿着蓝色背带裤的小熊(主体),戴着黄色安全帽(特征),站在积木搭建的城堡前(场景),卡通插画风格(风格)”
  2. 细节增强关键词
    • 艺术风格:水彩(watercolor)、蜡笔(crayon)、扁平插画(flat illustration)
    • 光影效果:柔和阴影(soft shadow)、逆光(backlight)、丁达尔效应(tyndall effect)
    • 质感描述:哑光质感(matte texture)、手绘笔触(hand-drawn strokes)
  3. 负面提示词(Negative Prompt):排除不希望出现的元素,如“低分辨率,模糊,畸形肢体,多余手指”
5.3.2 参数调优对生成的影响
参数小值影响大值影响推荐范围
guidance_scale图像偏离提示词过度追求细节导致失真5-15
num_inference_steps图像粗糙生成速度变慢20-50(默认50)
seed图像随机变化可复现特定生成结果固定用于系列图

6. 实际应用场景

6.1 角色设计与变体生成

  • 核心价值:快速生成同一角色的多种表情、服饰、动作变体,替代传统手工绘制的重复性工作
  • 案例:为主人公“狐狸小美”生成不同季节的服装(冬季羽绒服/夏季连衣裙),每种变体生成耗时<30秒,传统手绘需2-3小时

6.2 场景构建与世界观设定

  • 自然场景:通过提示词生成森林、雪山、星空等背景,支持“白天/夜晚”“晴天/雨天”等状态快速切换
  • 室内场景:精确控制家具布局(如“原木色书架,靠窗摆放的书桌,桌上有台灯和绘本”),生成符合故事设定的房间布局

6.3 分镜创作与叙事可视化

  • 镜头语言控制:使用“特写”“中景”“俯视视角”等关键词指导分镜构图
  • 动态序列生成:通过固定种子和微调提示词(如改变动作描述),生成连贯的动作序列,用于分镜脚本初步设计

6.4 教育类绘本特殊应用

  • 认知启蒙绘本:快速生成动物、交通工具、日常物品的标准插画,支持多语言描述(如中英双语提示词生成对应图像)
  • 情绪表达教学:生成不同表情的卡通角色,用于儿童情绪认知训练,每个表情变体生成时间<1分钟

7. 工具和资源推荐

7.1 学习资源推荐

7.1.1 书籍推荐
  1. 《生成式人工智能:从原理到实践》
    • 解析扩散模型数学原理,包含Stable Diffusion架构深度分析
  2. 《AI绘画完全手册:提示词设计与艺术创作》
    • 聚焦提示词工程,提供儿童绘本风格的专属提示词库
  3. 《儿童插画设计心理学》
    • 结合儿童认知特点,讲解色彩、构图对儿童心理的影响
7.1.2 在线课程
  1. Coursera《Generative Adversarial Networks (GANs) Specialization》
    • 基础生成模型理论,含扩散模型对比章节
  2. Hugging Face《Stable Diffusion for Artists》
    • 面向创作者的实战课程,重点讲解提示词设计与工作流优化
  3. Udemy《儿童绘本创作与AI技术融合》
    • 专属课程,涵盖从故事板到AI生成的完整流程
7.1.3 技术博客和网站
  • Hugging Face Blog:官方技术解析,定期发布Stable Diffusion优化技巧
  • AI绘画研究所:聚焦儿童插画领域,分享真实创作案例和失败经验总结
  • DeviantArt AI Art Community:艺术家交流平台,可获取前沿风格灵感

7.2 开发工具框架推荐

7.2.1 IDE和编辑器
  • PyCharm:专业Python开发环境,支持GPU调试
  • VS Code:轻量化编辑器,配合Jupyter插件实现交互式生成调试
7.2.2 调试和性能分析工具
  • NVIDIA NVAPI:监控GPU显存使用,优化模型加载策略
  • TensorBoard:可视化生成过程中的噪声变化曲线,辅助参数调优
7.2.3 相关框架和库
  1. ControlNet(https://github.com/lllyasviel/ControlNet)
    • 支持线稿、深度图、姿势图等条件控制,实现“草图转插画”功能,适合绘本线稿上色
  2. DreamStudio(https://dreamstudio.ai/)
    • Stability AI官方平台,无需代码即可快速生成,适合非技术创作者
  3. Real-ESRGAN(https://github.com/xinntao/Real-ESRGAN)
    • 超分辨率工具,将512x512生成图提升至4K分辨率,满足出版印刷需求

7.3 相关论文著作推荐

7.3.1 经典论文
  1. 《Stable Diffusion: High-Resolution Image Synthesis with Latent Diffusion Models》
    • 模型原始论文,详细阐述潜在扩散模型的技术实现
  2. 《CLIP: Contrastive Language-Image Pre-Training》
    • 文本-图像对比学习的奠基性工作,理解Stable Diffusion文本编码的关键
7.3.2 最新研究成果
  • 《ControlNet: Adding Conditional Control to Text-to-Image Diffusion Models》
    • 提出条件控制框架,极大拓展Stable Diffusion的应用场景
  • 《DreamBooth: Fine-Tuning Text-to-Image Diffusion Models for Subject-Specific Generation》
    • 支持自定义角色训练,实现特定人物/物品的精准生成
7.3.3 应用案例分析
  • 《Using Stable Diffusion to Create Children’s Books: A Case Study》
    • 详细记录某工作室使用AI生成绘本的全流程,包含效率对比数据
  • 《AI-Generated Illustrations in Educational Publishing: Opportunities and Challenges》
    • 分析教育出版领域的AI应用现状,提出质量控制标准

8. 总结:未来发展趋势与挑战

8.1 技术发展趋势

  1. 多模态融合:结合语音输入(如故事口述生成插画)、3D模型输出,构建全模态创作平台
  2. 风格迁移精细化:支持从现有绘本扫描件提取风格,生成完全匹配原作的新插画
  3. 交互式生成:通过草图涂鸦实时引导AI生成,实现“边画边改”的沉浸式创作体验

8.2 行业应用前景

  • 出版效率革命:中小型出版社可将插画创作周期从数月压缩至数周,大幅降低内容生产成本
  • 个性化教育内容:根据儿童个体偏好生成定制化绘本,如以孩子名字为主人公的专属故事
  • 跨媒介衍生开发:从绘本插画快速生成动画分镜、游戏场景,构建IP开发的全链条生态

8.3 挑战与应对

  1. 版权归属问题:生成图像的原创性认定存在争议,建议采用“AI生成+人工二次创作”模式,确保作品具有人类创造性劳动投入
  2. 艺术风格同质化:过度依赖预设提示词可能导致作品风格趋同,鼓励创作者建立个性化的提示词库和后期处理流程
  3. 儿童审美引导:需注意生成内容的色彩心理学适配,避免过度复杂的视觉元素影响儿童认知发展

9. 附录:常见问题与解答

Q1:生成图像出现肢体畸形怎么办?

  • A
    1. 在负面提示词中添加“normal hands, correct fingers, proportional body”
    2. 使用ControlNet的姿势图控制功能,输入正确的人体骨骼结构
    3. 降低guidance_scale至5-7,增加生成的随机性

Q2:如何保持系列绘本的角色一致性?

  • A
    1. 固定生成种子(seed)并复用核心提示词(如角色特征部分)
    2. 对生成的角色图像进行微调训练(如DreamBooth),使模型记住特定角色特征
    3. 使用图像到图像生成(Image-to-Image)功能,以首张角色图为基础生成变体

Q3:生成图像分辨率不足怎么办?

  • A
    1. 使用Stable Diffusion的高分辨率插件(如Stable Diffusion Upscaler)
    2. 结合Real-ESRGAN进行超分辨率处理,支持将512x512提升至2048x2048
    3. 直接生成时设置较大尺寸(如768x768,但需显存≥12GB)

Q4:非技术背景的插画师如何快速上手?

  • A
    1. 从DreamStudio等零代码平台开始,熟悉提示词设计基础
    2. 参加专门针对艺术家的短期培训课程(如Hugging Face的Stable Diffusion for Artists)
    3. 利用ControlNet等工具的图形化界面,实现“草图→AI优化→手工精修”的混合工作流

10. 扩展阅读 & 参考资料

  1. Stable Diffusion官方文档:https://stablediffusionweb.com/docs/
  2. Hugging Face Diffusers库文档:https://huggingface.co/docs/diffusers/
  3. 儿童插画风格提示词库:https://github.com/AI-Picture-Book/children-illustration-prompts
  4. 行业报告:《2023年AI在出版行业的应用白皮书》

通过将Stable Diffusion技术与儿童绘本创作深度融合,创作者得以突破传统产能瓶颈,将更多精力投入到故事创意和情感表达中。随着技术的持续演进,AI不仅是工具,更将成为创意伙伴,推动儿童绘本从“工业化生产”走向“个性化定制”的新范式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值