项目概述
本项目将使用 Python 对某电商平台的销售数据进行分析和可视化。我们将借助豆包来解决编程过程中遇到的问题,同时获取代码示例和优化建议。
步骤 1:明确项目目标
我们的目标是分析电商销售数据,了解不同产品类别的销售情况、销售趋势以及客户购买行为。通过可视化展示,直观地呈现数据特征,为业务决策提供支持。
步骤 2:准备数据
假设我们有一个名为 sales_data.csv 的 CSV 文件,包含以下字段:订单日期、产品类别、销售额、客户 ID。
步骤 3:使用豆包辅助完成代码编写
3.1 安装必要的库
在开始编写代码之前,我们需要安装一些必要的 Python 库,如 pandas 用于数据处理,matplotlib 和 seaborn 用于数据可视化。可以使用以下命令进行安装:
bash
pip install pandas matplotlib seaborn
3.2 读取数据
我们可以向豆包询问如何使用 pandas 读取 CSV 文件。豆包会给出如下代码示例:
python
import pandas as pd
# 读取 CSV 文件
data = pd.read_csv('sales_data.csv')
# 查看数据基本信息
print(data.info())
# 查看数据集行数和列数
rows, columns = data.shape
if rows > 0:
# 数据不为空查看数据前几行信息
print(data.head().to_csv(sep='\t', na_rep='nan'))
else:
print('数据为空')
3.3 数据清洗和预处理
接下来,我们可能需要对数据进行清洗和预处理,例如处理缺失值、转换数据类型等。我们可以向豆包询问如何处理数据中的缺失值。豆包可能会给出如下代码:
python
# 检查缺失值
print(data.isnull().sum())
# 处理缺失值,这里简单地删除包含缺失值的行
data = data.dropna()
# 转换订单日期列的数据类型为日期类型
data['订单日期'] = pd.to_datetime(data['订单日期'])
3.4 数据分析
我们可以对数据进行一些分析,例如计算不同产品类别的总销售额、每月的销售趋势等。向豆包询问如何计算不同产品类别的总销售额,豆包会给出如下代码:
python
# 计算不同产品类别的总销售额
category_sales = data.groupby('产品类别')['销售额'].sum().reset_index()
# 查看结果
print(category_sales)
3.5 数据可视化
使用 matplotlib 和 seaborn 库对分析结果进行可视化。向豆包询问如何绘制不同产品类别的总销售额柱状图,豆包会给出如下代码:
python
import matplotlib.pyplot as plt
import seaborn as sns
# 设置图片清晰度
plt.rcParams['figure.dpi'] = 300
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['WenQuanYi Zen Hei']
# 绘制不同产品类别的总销售额柱状图
plt.figure(figsize=(10, 6))
sns.barplot(x='产品类别', y='销售额', data=category_sales)
plt.title('不同产品类别的总销售额')
plt.xlabel('产品类别')
plt.ylabel('总销售额')
plt.xticks(rotation=45)
plt.show()
步骤 4:代码整合与优化
将上述代码整合到一个 Python 文件中,并进行适当的优化。以下是整合后的代码:
ecommerce-sales-analysis
电商销售数据分析与可视化代码
V1
生成 ecommerce_sales_analysis.py
步骤 5:运行代码并分析结果
将上述代码保存为一个 Python 文件(例如 ecommerce_sales_analysis.py),然后在命令行中运行:
bash
python ecommerce_sales_analysis.py
运行代码后,会在控制台输出数据的基本信息、缺失值情况以及不同产品类别的总销售额。同时,会弹出一个窗口显示不同产品类别的总销售额柱状图。
步骤 6:进一步探索和优化
根据分析结果,我们可以进一步探索数据,例如分析不同时间段的销售趋势、客户购买行为等。同时,可以对代码进行优化,提高代码的性能和可读性。在这个过程中,我们可以随时向豆包寻求帮助。
通过以上步骤,我们借助豆包完成了一个简单的数据分析与可视化项目。在实际项目中,我们可以根据具体需求和数据特点,不断调整和完善分析方法和可视化方式。
整体代码
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# 读取 CSV 文件
data = pd.read_csv('sales_data.csv')
# 查看数据基本信息
print(data.info())
# 查看数据集行数和列数
rows, columns = data.shape
if rows > 0:
# 数据不为空查看数据前几行信息
print(data.head().to_csv(sep='\t', na_rep='nan'))
else:
print('数据为空')
# 检查缺失值
print(data.isnull().sum())
# 处理缺失值,这里简单地删除包含缺失值的行
data = data.dropna()
# 转换订单日期列的数据类型为日期类型
data['订单日期'] = pd.to_datetime(data['订单日期'])
# 计算不同产品类别的总销售额
category_sales = data.groupby('产品类别')['销售额'].sum().reset_index()
# 查看结果
print(category_sales)
# 设置图片清晰度
plt.rcParams['figure.dpi'] = 300
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['WenQuanYi Zen Hei']
# 绘制不同产品类别的总销售额柱状图
plt.figure(figsize=(10, 6))
sns.barplot(x='产品类别', y='销售额', data=category_sales)
plt.title('不同产品类别的总销售额')
plt.xlabel('产品类别')
plt.ylabel('总销售额')
plt.xticks(rotation=45)
plt.show()