概述
频域分析的原理是线性系统在受到正弦信号输入时,其输出的幅值和相位随着输入信号的频率变化而变化。
本文介绍用Matlab绘制奈奎斯特图和伯德图的方法并总结伯德图判读的相关知识
Matlab版本为2022b,文中所有代码都可以直接运行
奈奎斯特图
已知系统开环传递函数如图
绘制奈奎斯特图的代码如下
num=[250,250];%定义传递函数的分子矢量
den=conv([1,0],conv([1,5],[1,15]));%定义传递函数分母矢量,conv是卷积
sys=tf(num,den);%建立传递函数
nyquist(sys)%画奈奎斯特图
图像如下
图像没有包围(-1,0j)点,所以系统稳定
伯德图
已知开环传递函数如下
代码如下
num=[100,500];%分子矢量
den=[1,100.5,2550,1250,0];%分母矢量
sys=tf(num,den);%建立传递函数
margin(sys);%绘制伯德图并标出稳定裕量
grid on%给图像增加网格
[Gm,Pm,Wcg,Wcp]=margin(sys)%输出Gm增益裕量,Pm相位裕量,Wcg相位穿越频率,Wcp增益穿越频率
伯德图如下
相关输出值如下
伯德图判读
低频段 | 斜率中等比较好 斜率越大则稳态误差越小 斜率太大则系统不稳定 |
中频段 | 斜率偏小比较好 相位裕量在30°-60°之间则系统稳定性好,同时时域上的超调量σ适中 幅值穿越频率wc越大,系统快速性越好 |
高频段 | 斜率大比较好 衰减的越快越好 |