谷歌发布Gemini 2.5 Pro,这次直接登顶!附一手实测结果

AI圈最狗血的爱情故事莫过于Google和OpenAI的狙击战了!

当今日OpenAI准备开直播宣布全量开放GPT-4o图像生成能力时,Google抢先一步,发布了Gemini 2.5 Pro Experimental。  

这款模型可不是为了应付OpenAI急匆匆就推出一个模型来凑数的,它的各项能力全部拉满了。  

Google 的CEO更是表示Gemini 2.5 Pro Experimental是至今为止最智能的模型,事实也的确如此。

图片

Gemini 2.5 Pro Experimental有太多第一的成绩了,在这里就不给大家一一念。

给大家分享几个我个人比较关心的几个成绩单。

在最新的Arena排行榜中,Gemini 2.5 Pro以绝对的优势拿下第一,而且创下了历史最大分数飞跃,比Grok-3/GPT-4.5整整高出了40分!

图片

可能还有很多小伙伴不了解Arena这个排行榜,给大家简单科普一下。

Arena 是一个由 LMSYS Org 创建的 AI 大语言模型排行榜,主要用于评估和比较不同 AI 聊天机器人的性能。

借鉴了国际象棋中的 Elo 评分机制,用户对不同模型回答同一问题的表现进行投票,获胜的模型会获得相应的分数,分数越高,模型表现越好。

换句话说,它的评分机制是采用匿名投票的方式,哪个模型回答的效果更好,它的排名就更高。 

 如上图所示:Gemini 2.5 Pro Experimental是现阶段的第一!

同时在网页开发领域,它也取得有史以来最好的最好成绩,超越Claude 3.5、DeepSeek R1等模型,获得网页开发竞技场(WebDev Arena)第二名的成绩。

图片

和其他编程排行榜动不动就超越Claude 3.7,这个成绩就显得非常真实。

此外,Gemini 2.5 Pro Experimental还是一个多模态模型,并成功登顶了视觉竞技场(Vision Arena)排行榜榜首!

图片

目前,Gemini 2.5 Pro已在Google AI Studio和Gemini应用中,向Gemini Advanced用户开放,并将很快在Vertex AI上推出。

附上免费使用地址:https://aistudio.google.com/prompts/new_chat

图片

那它的实际效果到底如何?我们来测试一下,毕竟排行榜的成绩还不如测试来得实在。

让Gemini2.5编写一个 p5.js 程序,展示一个球在旋转的六边形内弹跳。球应受到重力和摩擦力的影响,并且必须真实地反弹到旋转的墙壁上,添加滑块来调整参数。

看起来是不是还不错,来一个难度高的,并它和o1 Pro对比一下,看看谁得编程能力更强。

整体而言,两个都不错,但 o1-pro 呈现的效果会更好一些,而且Gemini 2.5生成的蓝色小球掉出来了......

再来一道最近搜刮到的模型难题,之前试了一下,发现DeepSeek R1、混元 T1等模型都没有做出来,看看它们两是否可以做出来。

测试题:一根7米的棍子是否能通过长三米宽三米的门。

图片

Gemini 2.5 Pro

图片

o1 Pro

这两款模型全部回答失败,仅仅只是把这道题当作是一道二维空间,而没有考虑到三维空间。

再来看看它们的数学能力如何,上传一道高三摸底考试数学题。

图片

先公布答案,答案是「B、C、D」

图片

Gemini 2.5 Pro

图片

o1 Pro

Gemini 2.5 Pro回答正确,反观o1 Pro回答错误,看来Gemini 2.5 Pro的推理能力真不错。

虽然此次测评没有基准测试那么全,但也可以看到Gemini 2.5 Pro的强大之处,如果大家感兴趣,可以亲自去体验一下,毕竟是免费的。

相关阅读:


国内用户如何订阅Claude

想要订阅海外产品,如何解决支付难题

<think>好的,用户现在问的是“比deepseek更好的ai”。首先,我需要明确用户所说的“deepseek”具体指的是哪一个AI产品或公司。因为“DeepSeek”可能指的是深度求索公司,他们专注于AGI的研究,也有自己的AI模型,比如DeepSeek-R1。也有可能是用户拼写错误,或者指的是其他类似名称的产品。所以首先需要确认这一点。 用户可能已经了解过DeepSeek,现在想寻找比它更好的AI,但“更好”的标准是什么?不同场景下对AI的需求不同。比如,有的用户可能更关注模型的通用能力,有的关注特定领域(如编程、数学),有的关注多模态能力,或者响应速度、成本等。所以需要先分析用户的需求点。 接下来,我需要比较目前主流的AI模型,看看哪些在特定方面可能优于DeepSeek。例如,GPT-4在通用任务上表现优异,Claude 3在长文本处理上更强,Gemini 1.5 Pro支持超长上下文,而国内的一些模型如GLM-4、通义千问、Kimi可能在中文处理或特定功能上有优势。此外,开源模型如Llama 3和Mistral也可能在某些定制化场景下更好。 用户可能没有明确说明应用场景,所以需要建议根据具体需求选择模型。比如,如果是需要处理超长文本,Kimi可能更适合;如果是编程,GitHub Copilot或ChatGPT更合适。另外,用户可能对成本敏感,这时候可能需要推荐性价比高的模型,或者开源可自行部署的选项。 还要考虑用户是否有技术背景。如果他们有能力自己部署和调优模型,开源模型可能更合适;否则,商业化的API或服务更方便。此外,用户可能对数据隐私有要求,这时候需要推荐可以本地部署的模型。 最后,需要提醒用户,AI领域发展迅速,模型的优劣可能随时间变化,建议持续关注最新动态。同时,不同模型的优势领域不同,没有绝对的“更好”,只有更适合的。</think>在AI领域,"更好"的定义取决于具体需求场景(如通用能力、垂直领域表现、成本效益等)。以下从不同维度分析当前(2024年)具有竞争力的AI模型/产品,并对比建议: --- ### 一、**综合能力领先的通用大模型** #### 1. **GPT-4 & GPT-4o(OpenAI)** - **优势**: - 多模态能力最强(支持文本/语音/视觉交互) - 复杂推理能力突出(如解决包含$$ \sum_{k=1}^n \frac{k^3}{2^k} $$的数学推导) - 知识截止时间更新至2023年10月(比多数模型的2022年更近) - **适用场景**:科研分析、跨领域问题解决、创意生成 #### 2. **Claude 3 Opus(Anthropic)** - **突破点**: - 支持200K tokens超长上下文(相当于15万汉字) - 法律/医疗等专业领域理解更精准 - 根据论文测试,在GSM8K数学基准测试准确率达95.2% --- ### 二、**垂直领域特化模型** #### 1. **GitHub Copilot(代码场景)** - **对比优势**: - 直接集成在VS Code等IDE中 - 支持全栈语言(从Python到Rust) - 根据2024 Stack Overflow调查,开发者使用率高达73% #### 2. **AlphaGeometry(DeepMind)** - **数学能力突破**: - 在IMO级别几何题上达到人类金牌选手水平 - 可自动生成包含$$ \frac{AB}{CD} = \frac{BC}{AD} $$的证明步骤 --- ### 三、**国产自研模型** #### 1. **GLM-4(智谱AI)** - **特点**: - 中文理解能力优于GPT-4(诗词创作/古文翻译) - 支持10万字长文本处理 - 单位token成本比DeepSeek低约30% #### 2. **通义千问2.5(阿里云)** - **行业应用**: - 企业级知识库微调响应速度提升50% - 内置金融/法律等专业模式 #### 3. **Kimi(月之暗面)** - **长文本突破**: - 支持200万字上下文(技术白皮书/长篇小说分析) - 根据输入内容自动生成思维导图 --- ### 四、**开源替代方案** #### 1. **Llama 3(Meta)** - **技术参数**: - 700亿参数版本数学推理能力超过GPT-3.5 - 支持商业免费使用(需自行微调) #### 2. **Mistral 8x22B** - **性价比优势**: - 相同硬件下推理速度比DeepSeek快1.8倍 - 在HuggingFace开源模型排行榜持续前三 --- ### 五、**选择建议** | 需求维度 | 推荐方案 | 关键指标对比 | |------------------|------------------------------|------------------------------| | 多模态交互 | GPT-4o | 支持视频理解/实时语音 | | 中文专业领域 | GLM-4 | 中文NER准确率92.7% | | 企业私有化部署 | 通义千问 | 支持全链路数据隔离 | | 长文本处理 | Kimi | 200万字上下文记忆 | | 数学/逻辑推理 | AlphaGeometry + GPT-4 | IMO级问题解决率85% | | 低成本开发 | Llama 3 70B | 商用授权成本为0 | --- ### 六、**未来趋势观察** 1. **多模态融合**:Google Gemini 1.5 Pro已实现音频/视频/代码多模态统一表示 2. **小型化模型**:Phi-3-mini(微软)仅38亿参数但数学能力超越部分70B模型 3. **具身智能**:Figure 01等机器人正实现大模型与物理世界的直接交互 建议根据具体场景需求组合使用(如用Kimi处理长文档+GPT-4做分析),同时关注AI进化速度,主流模型每3-6个月会有显著能力跃升。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值