循环(时间循环)反向传播网络解析
1. 识别结果测试
在测试循环反向传播网络的性能时,进行了错误检测和鲁棒性两方面的测试。
- 错误检测 :
- 首先,将训练得到的权重保存到一个数据文件中。
- 接着,修改程序中的数据集,把字符 ‘G’、‘H’ 和 ‘I’(训练向量 6、7 和 8)替换为字符 ‘X’、‘Y’ 和 ‘Z’。
- 然后,运行程序,从数据文件中加载之前保存的权重,并将输入应用到网络中,且不进行进一步的训练。
- 最终得到的结果如下:
| 训练向量 | 输出结果 | 识别情况 |
| ---- | ---- | ---- |
| 6 | [ 0.00599388 0.00745234 ] | 已识别 |
| 7 | [ 0.0123415 0.00887678 ] | 已识别 |
| 8 | [ 0.0433571 0.00461456 ] | 已识别 |
所有三个字符都成功映射到错误信号 {0, 0}。
- 鲁棒性测试 :
为了研究神经网络的鲁棒性,向输入添加了一些噪声。在 36 位中出现 1 位失真的情况下,各训练集的识别率如下:
| 训练集 | 识别情况 | 识别率 |
| ---- | ---- | ---- |
| 0 | 18/38 识别 | 47.3684% |
| 1 | 37/38 识别 | 97.3684% |
| 2 | 37/38 识别 | 97.3684% |
| 3 | 5/38 识别 | 13.1579% |
超级会员免费看
订阅专栏 解锁全文
356

被折叠的 条评论
为什么被折叠?



