49、数据生成与元优化:CTGAN与超参数调优

数据生成与元优化:CTGAN与超参数调优

1. CTGAN:条件表格生成对抗网络

CTGAN(Conditional Tabular GAN)是一种用于生成表格数据的强大工具。它的官方实现以方便易用的包形式提供,可通过pip进行安装:

pip install sdv

1.1 简单CTGAN示例

为了保持一致性和便于比较,我们使用Higgs Boson数据集来生成人工样本。以下是一个简单的CTGAN训练和采样示例:

# using test dataset since it has more samples
import pandas as pd
from sdv.tabular import CTGAN

data = pd.read_csv("../input/higgsb/test.csv")
ctgan_model = CTGAN(verbose=True)
ctgan_model.fit(data)
new_data = ctgan_model.sample(num_rows=800)

在没有进行任何超参数调优的情况下,CTGAN的性能与之前讨论的VAE相比非常出色。从生成的合成数据和实际数据集的双变量关系对图来看,两者几乎难以区分。

1.2 条件生成

CTGAN的“C”(条件)特性赋予了模型很大的灵活性。我们可以指定“primary_key”来为特定特征生成唯一数据,并使用“anonymize_field”选项

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值