判断麻将和牌的算法(转载)
2007年05月22日 星期二 下午 05:59
/***************************************************************
* 文件名:hu.cpp * * * * 功 能:演示一个简洁明了的递归函数——判断[麻将]的和牌。 * * * * 说 明:1. 此函数不判断七对和十三幺,读者不难自行判断; * * 同时由于麻将的规则各不相同,也请读者自己添加和修改。* * * * 2. 其他与麻将类似的游戏,如[字牌](又称跑胡子、 * * 二七十)等牌类游戏,也可采用类似的判断函数。 * * * * 环 境: VC 6.0, 但符合ANSI C标准,随便移植 ^_^ * * * * 作 者:shyworm(怕怕虫) * * E_Mail: shyworm@sina.com * ***************************************************************/ #include <stdio.h>
int Hu(int PAI[38]);
int Remain(int PAI[38]);
int main()
{ // 把一副牌放在下面的数组里,可以任意填入数字来测试函数正确与否。 // 为了方便,PAI[0],PAI[10],PAI[20],PAI[30]都弃之不用,并且必须 // 置为0,千万注意! int PAI[38] = { 0, 1,1,1,0,1,1,1,0,0, // PAI[ 1- 9] 壹万~玖万的个数 0, 0,0,0,0,0,3,0,0,0, // PAI[11-19] 壹铜~玖铜的个数 0, 0,0,0,0,0,0,0,0,0, // PAI[21-29] 壹条~玖条的个数 0, 0,1,1,1,0,0,0 // PAI[31-37] 东南西北中发白的个数 };
// 请务必先排除“七对” 和“十三幺”,由于简单,所以不提供了
// if( QIDUI(PAI) )... // if( SHISANYAO(PAI) )...
if( Hu(PAI) )
printf("哈!我和啦!/n"); else printf("哎,和不成!/n");
return 1;
}
// 判断和牌的递归函数,不考虑“七对” 和“十三幺”。因为如果
// 把“七对” 和“十三幺”的判断放在递归函数里,将得不偿失。 int Hu(int PAI[38]) { static int JIANG = 0; // 将牌标志,即牌型“三三三三二”中的“二”
if( !Remain(PAI) ) return 1; // 递归退出条件:如果没有剩牌,则和牌返回。
for(int i=1;!PAI[i]&&i<38;i++); // 找到有牌的地方,i就是当前牌, PAI[i]是个数
printf("i = %d/n",i); // 跟踪信息
// 4张组合(杠子)
if ( PAI[i] == 4 ) // 如果当前牌数等于4张 { PAI[i] = 0; // 除开全部4张牌 if( Hu(PAI) ) return 1; // 如果剩余的牌组合成功,和牌 PAI[i] = 4; // 否则,取消4张组合 }
// 3张组合(大对)
if ( PAI[i] >= 3 ) // 如果当前牌不少于3张 { PAI[i] -= 3; // 减去3张牌 if( Hu(PAI) ) return 1; // 如果剩余的牌组合成功,和牌 PAI[i] += 3; // 取消3张组合 }
// 2张组合(将牌)
if ( !JIANG && PAI[i] >= 2 ) // 如果之前没有将牌,且当前牌不少于2张 { JIANG = 1; // 设置将牌标志 PAI[i] -= 2; // 减去2张牌 if( Hu(PAI) ) return 1; // 如果剩余的牌组合成功,和牌 PAI[i] += 2; // 取消2张组合 JIANG = 0; // 清除将牌标志 } if ( i > 30 ) return 0; // “东南西北中发白”没有顺牌组合,不和
// 顺牌组合,注意是从前往后组合!
if( i%10 != 8 && i%10 != 9 && // 排除数值为8和9的牌 PAI[i+1] && PAI[i+2] ) // 如果后面有连续两张牌 { PAI[i]--; PAI[i+1]--; PAI[i+2]--; // 各牌数减1 if( Hu(PAI) ) return 1; // 如果剩余的牌组合成功,和牌 PAI[i]++; PAI[i+1]++; PAI[i+2]++; // 恢复各牌数 }
// 无法全部组合,不和!
return 0; }
// 检查剩余牌数
int Remain(int PAI[38]) { int sum = 0; for(int i=1;i<38;i++) sum += PAI[i]; return sum; } |