弹性力学问题的求解策略与奇异解分析
1. 近似求解方法
在弹性力学问题中,寻找精确解析解往往具有很大的难度。因此,人们开展了大量工作来开发近似求解方法。其中,变分方法是一个重要的研究领域,它与能量定理相关。该方法的主要思想是将弹性力学的场方程与一个寻找特定积分泛函极值的变分问题联系起来。
1.1 Ritz方法
Ritz方法采用一组近似函数来求解弹性力学问题,通过确定特定能量积分的驻值来实现。这组近似函数需要满足问题的边界条件,但只能近似地使能量积分达到极值。通过在近似解集中包含更多的项,可以提高该方法的精度。不过,由于对于复杂几何形状的问题很难找到合适的近似函数,变分技术在解决一般问题上的贡献有限,但在有限元方法中有着重要的应用。
2. 数值求解方法
过去几十年里,数值方法在解决复杂几何形状的弹性力学问题中发挥了主要作用。以下是几种重要的数值方法:
2.1 有限差分法(FDM)
有限差分法将控制场方程中的导数用差分商代替,差分商涉及研究区域内离散网格点上的解值。通过反复应用这种表示方法,可以建立关于未知网格点值的代数方程组。该方法是一种经典方法,早在一个多世纪前就已确立。然而,它在处理复杂形状区域时存在精度问题,不过可以通过坐标变换技术来消除这一问题。
2.2 有限元法(FEM)
有限元法的基本概念是将研究对象划分为有限个称为单元的子区域。然后,使用所谓的插值或形状函数对每个单元内未知因变量的变化做出特定假设。这种近似变化通过单元内称为节点的特殊位置上的解值来量化。通过这种离散化过程,该方法建立了一个关于未知节点值的代数方程组,以近似连续解。由于
超级会员免费看
订阅专栏 解锁全文
72

被折叠的 条评论
为什么被折叠?



