2024年A股最新退市规则

1.退市新规发布时间

A 股最新退市新规于 2024 年 4 月 30 日由沪深北三大交易所修订并发布,将于 2025 年 1 月 1 日正式实施 。主要涉及财务类、交易类、规范类和重大违法类强制退市等方面。

2.退市规则

2.1 财务类强制退市

2.1.1 净利润与营收不达标

  • 主板上市公司连续两年扣非净利润为负且营业收入低于 3 亿元。
  • 创业板和科创板连续两年扣非净利润为负且营业收入低于 1 亿元。
  • 北交所连续两年扣非净利润为负且营业收入低于 5000 万元,将被实施退市风险警示,第二年仍未改善则强制退市。

2.1.2 净资产为负

上市公司最近一个会计年度经审计的期末净资产为负值,将被实施退市风险警示。

2.1.3 审计报告不合格

  • 主板连续三年审计报告不合格且营收低于一定门槛,主板营收低于 3 亿元。
  • 创业板、科创板和北交所营收低于 1 亿元,将先被标记为 * ST,
``` {智能估值体系V13} DYNPETTM:=IF(FINANCE(1)>300000000 AND FINANCE(4)>150000000, CLOSE/((FINANCE(1)/MAX(FINANCE(4),120000000)+0.000001)*0.85)* (1+0.15*INDUSTRY_COMPARE('PE')),1000); PB_RATE:=IF(FINANCE(34)>0.85 AND CLOSE>5.5, CLOSE/((FINANCE(34)*0.85+REF(FINANCE(34),1)*0.15)*0.92+0.000001),1000); {修正PEG计算V4} PEG_VAL:=DYNPETTM/MAX(FINANCE(30)/REF(MAX(FINANCE(30),0.01),4),1.35); {分形波动率V20} VOL_REG:=DMA(STD(CLOSE,IF(MARKET_STATUS('BULL'),144,233))/MA(CLOSE,233)*SQRT(233),34)*1.12; VAR_PERIOD:=IF(VOL_REG<0.018,377,IF(VOL_REG<0.04,233,89)); FAST_LEN:=BARSLAST(CROSS(VOL_REG,0.035))+18; SLOW_LEN:=IF(VOL_REG>0.2,INT(VAR_PERIOD*1.618),CEILING(VAR_PERIOD*2.118)); {行业轮动V13} HY_RET:=EMA((INDEXC/REF(INDEXC,5)-1)*100,5)*1.35; IND_RATIO:=EMA(INDEXC/MAX(INDEXO,0.01),11); TRANS_MAT:=EMA((SUM((IND_RATIO>REF(IND_RATIO,5))*(REF(IND_RATIO,5)>REF(IND_RATIO,21)),21)+ SUM((IND_RATIO>REF(IND_RATIO,5))*(REF(IND_RATIO,5)>REF(IND_RATIO,34)),34))/2/ (SUM(REF(IND_RATIO,5)>REF(IND_RATIO,21),55)+0.0001),5); SECTOR_STR:=TRANS_MAT*EMA(HY_RET,8)*0.72+REF(TRANS_MAT,5)*EMA(HY_RET,13)*0.28; {行业筛选V3} CTOP_SECT:=COUNT(ABS(SECTOR_STR)>=ABS(REF(SECTOR_STR,1)),250)<=2; SECTOR_FLT:=SECTOR_STR>REF(SECTOR_STR,34)*1.18 AND CTOP_SECT AND CROSS(EMA(SECTOR_STR,8),EMA(SECTOR_STR,21)) AND SLOPE(SECTOR_STR,3)>SLOPE(SECTOR_STR,13)*1.2 AND FINANCE(42)/100000000>2; {十维情绪V24} MARKET_SENT:=EMA(ADVANCE/DECLINE,21)*0.68+ EMA(AMOUNT/REF(AMOUNT,5),21)*0.42+ EMA((VOL/FINANCE(7)-REF(VOL/FINANCE(7),8))/REF(VOL/FINANCE(7),8),34)*0.35+ EMA(REF(FINANCE(20),3)/FINANCE(7),13)*0.3; {三维共振V6} DIF:=EMA(CLOSE,10)-EMA(CLOSE,24); DEA:=EMA(DIF,7); {资金流向V5} BIGBUY:=SUM(IF(VOL/FINANCE(7)>=0.01 AND COUNT(VOL/FINANCE(7)>=0.008,3)=3, AMOUNT*0.75,0),3); BIGSELL:=SUM(IF(VOL/FINANCE(7)>0.01 AND COUNT(VOL/FINANCE(7)>0.008,3)=3, AMOUNT*0.25,0),3); FUNDFLOW:=(BIGBUY-BIGSELL)/FINANCE(7)*100; 资金流信号:=EMA(FUNDFLOW,5)>0.75 AND MA(BIGBUY,3)/MA(BIGSELL,3)>1.35 AND EVERY(FUNDFLOW>REF(FUNDFLOW,1),3); {情绪启动V3} 情绪启动:=CROSS(MARKET_SENT,1.25) AND COUNT(MARKET_SENT>1.05,3)>=2; {技术形态V4} 技术形态:=CLOSE>MAX(EMA(CLOSE,55),EMA(CLOSE,233)) AND DIF>EMA(DEA,3); {多周期趋势V3} MONTH_TREND:=CLOSE>EMA(CLOSE,34)*1.22 AND SLOPE(MA(CLOSE,55),13)>0.15; DAY_BREAK:=CLOSE>HHV(HIGH,13) AND VOL>MA(VOL,55)*2.8 AND VOL>REF(VOL,1)*1.8; {终极信号V7} 盘后选:=DYNPETTM<10.5 AND PB_RATE<1.8 AND PEG_VAL<0.58 AND SECTOR_FLT AND EVERY(CLOSE>EMA(CLOSE,34),5) AND FINANCE(30)/REF(MAX(FINANCE(30),0.01),4)>1.55 AND EVERY(VOL>MA(VOL,34)*1.25,3) AND 资金流信号 AND 情绪启动 AND 技术形态 AND CLOSE/EMA(CLOSE,34)>1.22 AND VOL/EMA(VOL,34)>1.35; {资金流验证V12} MAIN_FUND:=DYNAINFO(117)/10000; LHB_DATA:=IF(FINVALUE(244)>0,FINVALUE(244)/MAIN_FUND,0); //使用FINVALUE替代 CAPITAL_INFLOW:=SUM(AMO,13)/SUM(AMO,55)>0.88 AND SUM(IF(C>O*1.02 AND C>MA(C,21),V,0),13)/SUM(V,13)>0.78 AND (AMO-REF(AMO,13))/REF(AMO,13)>0.38 AND EVERY(V>REF(V,1)*1.15,8) AND REF(MAIN_FUND,8)/CAPITAL > MAIN_FUND/CAPITAL*1.32 AND HKHOLD>REF(HKHOLD,5) AND (MAIN_FUND-REF(MAIN_FUND,8))/CAPITAL>0.15 AND LHB_DATA>0.08; DRAWICON(盘后选 AND DAY_BREAK AND MONTH_TREND, LOW, 1);```你的身份是高级编程技术专家,精通各类编程语言,能对编程过程中的各类问题进行分析和解答。我的问题是【我编辑通达信选代码,你如何深度理解此代码能用2018-2024全A周期回测验证此代码选逻辑的准确性和胜率,评估月胜率达到多少?评估有效信号准确率达到多少?
04-03
内容概要:该论文聚焦于6G通信中20-100GHz频段的电磁场(EMF)暴露评估问题,提出了一种基于自适应可重构架构神经网络(RAWA-NN)的预测框架。该框架通过集成权重分析模块和优化模块,能够自动优化网络超参数,显著减少训练时间。模型使用70%的前臂数据进行训练,其余数据用于测试,并用腹部和四头肌数据验证模型泛化能力。结果显示,该模型在不同参数下的相对差异(RD)在前臂低于2.6%,其他身体部位低于9.5%,可有效预测皮肤表面的温升和吸收功率密度(APD)。此外,论文还提供了详细的代码实现,涵盖数据预处理、权重分析模块、自适应优化模块、RAWA-NN模型构建及训练评估等内容。 适合人群:从事电磁兼容性研究、6G通信技术研发以及对神经网络优化感兴趣的科研人员和工程师。 使用场景及目标:①研究6G通信中高频段电磁暴露对人体的影响;②开发更高效的电磁暴露评估工具;③优化神经网络架构以提高模型训练效率和预测精度。 其他说明:论文不仅提出了理论框架,还提供了完整的代码实现,方便读者复现实验结果。此外,论文还讨论了未来的研究方向,包括扩展到更高频段(如300GHz)的数据处理、引入强化学习优化超参数、以及实现多物理场耦合的智能电磁暴露评估系统。建议读者在实际应用中根据具体需求调整模型架构和参数,并结合真实数据进行验证。
内容概要:本文是北京金融科技产业联盟发布的《基于数据空间的金融数据可信流通研究报告》,探讨了金融数据可信流通的现状、挑战和发展前景。文章首先介绍了金融数据在数字化转型中的重要性及其面临的隐私保护和安全挑战。接着,文章详细阐述了数据空间的概念及其发展历程,尤其是可信数据空间(TDM)在我国的发展情况。文中还深入分析了金融数据可信流通的典型应用场景、关键技术和方案架构,如数据访问控制、数据使用控制、智能合约、数据脱敏等。最后,文章展示了多个典型场景应用案例,如中信银行总分行数据流通管控、工银金租数据流通、银联安全生物特征支付等,并总结了当前可信数据空间建设中存在的法规、技术、标准和商业模式挑战,提出了相应的政策建议。 适用人群:金融行业从业者、数据安全管理人员、政策制定者、科技研发人员等。 使用场景及目标:①理解金融数据可信流通的重要性和挑战;②学习可信数据空间的关键技术和应用场景;③探索金融数据可信流通的具体实践案例;④了解当前可信数据空间建设的瓶颈和未来发展方向。 其他说明:本文不仅提供了详尽的技术和应用分析,还提出了具体的政策建议,有助于推动金融数据可信流通的健康发展。阅读本文可以帮助读者深入了解金融数据安全保护和高效利用的最佳实践,为相关政策和技术的发展提供参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奥修的灵魂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值