股票交易体系专栏目录大纲

### YOLOv11 改进技术要点 YOLO (You Only Look Once) 系列模型自推出以来不断迭代优化,在目标检测领域取得了显著成就。对于 YOLOv11 的改进,主要集中在以下几个方面: #### 1. 模型架构调整 为了提高检测精度并减少计算量,研究人员通常会引入更高效的卷积模块或设计新的骨干网络来替代原有的 Darknet 结构[^4]。 #### 2. 数据增强策略 采用多样化的数据增强手段有助于提升模型泛化能力。这可能包括但不限于随机缩放、旋转、颜色抖动以及混合样本生成等方法[^5]。 #### 3. 锚框机制改革 传统锚框设定方式存在局限性,因此有学者提出了动态调整锚框尺寸或是完全摒弃预定义锚框的做法,转而利用中心点偏移预测物体边界框位置[^6]。 #### 4. 多尺度训练与推理 多尺度输入能够使模型更好地适应不同大小的目标对象。在实际操作过程中可以通过改变图片分辨率来进行多尺度训练和测试[^7]。 #### 5. Loss 函数优化 针对原有损失函数存在的不足之处进行了针对性修改,比如增加分类置信度惩罚项以抑制背景误判;或者借鉴其他优秀算法的思想构建复合型 loss function 来综合考量多种因素的影响[^8]。 ```python import torch.nn as nn class ImprovedLossFunction(nn.Module): def __init__(self, lambda_coord=5.0, lambda_noobj=0.5): super(ImprovedLossFunction, self).__init__() self.lambda_coord = lambda_coord self.lambda_noobj = lambda_noobj def forward(self, pred_boxes, target_boxes, confidences, targets_confidence): # 计算坐标误差 coord_loss = ... # 对象置信度误差 obj_conf_loss = ... # 非对象置信度误差 no_obj_conf_loss = ... total_loss = ( self.lambda_coord * coord_loss + obj_conf_loss + self.lambda_noobj * no_obj_conf_loss ) return total_loss ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奥修的灵魂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值