刚刚!AI绘画工具Stable diffusion 4.7+ComfyUI整合包终于来了!(一键安装包,解压即用)

「 无套路!文末提供免费下载 」

如果这个世界有上帝,那么祂一定是程序员。

国内SD绘画启动器第一人是我认为是B站的秋葉aaaki

因为制作了这款Stable Diffusion启动器,降低了国内使用SD的门槛且分文不收,秋叶被粉丝戏称赛博菩萨。

1、背景信息

▍Stable Diffusion 是什么?

Stable Diffusion(简称SD)是一种生成式人工智能,于2022年发布,主要用于根据文本描述生成详细图像,也可用于其他任务,如图像的修补、扩展和通过文本提示指导图像到图像的转换。除图像外,您还可以使用该模型创建视频和动画。

这是AI绘画第一次能在可以在消费级显卡上运行,任何人都可以下载模型并生成自己的图像。另外,SD高质量的成图以及强大的自由度(自定义、个性化)受到诸多网友的追捧。Stable

Diffusion XL 1.0 (SDXL 1.0) 是Stable Diffusion的一个更为高级和优化的版本,它在模型规模、图像质量、语言理解和模型架构等方面都有显著的改进。


▍Stable Diffusion 能做什么?

首先,大家在入坑SD前,务必要清楚现阶段的SD到底能做什么?能否满足自己的需求?

Stab

<think>好的,用户想了解如何进行本地部署的方法或教程。首先,我需要回忆一下之前提供的引用内容,看看有哪些相关信息。引用[1]提到了三种源码部署方式:transformers、vLLM、llama.cpp,以及应用部署如ollama和LM Studio。引用[3]详细介绍了Ollama的安装步骤和硬件软件要求,还有Docker和Open-WebUI的可选配置。引用[2]虽然主要是Stable Diffusion的教程,但里面提到的环境配置比如安装miniconda可能也适用于其他部署场景。 用户的问题比较广泛,可能是指AI模型(比如大语言模型或Stable Diffusion)的本地部署。需要分步骤回答,结构要清晰。首先应该介绍常见的部署方法,然后详细说明每种方法的步骤,可能还需要提到硬件和软件的要求,确保用户了解前提条件。 根据引用[1],源码部署和应用部署是两个主要方向。应用部署比如Ollama可能更适合新手,因为工具比较友好。而源码部署需要更多技术背景。需要分别讲解这两种方法,并给出示例,比如安装Ollama的具体步骤,或者使用transformers库的代码片段。同时,硬件要求部分来自引用[3],要提醒用户检查自己的配置是否满足,比如GPU、内存、存储空间等。 可能还需要提到环境配置,比如安装Python、CUDA驱动,或者使用Docker来简化部署。引用[2]中的miniconda安装也是环境配置的一部分,可以纳入软件准备环节。另外,引用[3]中的Docker和Open-WebUI作为可选工具,可以提升用户体验,尤其是图形界面部分,适合非技术用户。 用户可能需要具体的教程链接或命令示例,比如如何安装Ollama,如何运行模型。需要确保给出的命令准确,比如在Linux/macOS中使用curl命令下载Ollama,然后启动服务。对于源码部署,transformers的代码示例可能有用,但要注意使用正确的格式,如Python代码块。 最后,相关问题部分需要生成几个可能的问题,比如性能优化、选择哪种部署方式、常见错误处理等,帮助用户进一步学习。需要确保问题与主题相关,并且覆盖用户可能关心的其他方面。</think>### 本地部署方法及教程 本地部署主要分为**源码部署**和**应用部署**两种方式,具体方法如下: --- #### **一、硬件与软件准备** 1. **硬件要求** - **CPU/GPU**:推荐使用支持CUDA的NVIDIA GPU以加速计算(仅CPU可能导致性能受限)[^3]。 - **内存/显存**: - 小模型(如1.5B参数):至少8GB内存 - 中等模型(如7B/8B参数):需16GB内存或4GB显存 - 大模型(如32B参数):需更高配置。 - **存储空间**:根据模型大小预留(例如7B模型约需4.7GB,32B模型约20GB)。 2. **软件环境** - 操作系统:Windows/macOS/Linux均可。 - 必要工具- Python环境(推荐使用`miniconda`管理)[^2] - `Ollama`(模型管理工具- `Docker`(可选,用于容器化部署)[^3] --- #### **二、部署方法** ##### **1. 应用部署(推荐新手)** - **Ollama部署**(适合快速运行大模型): ```bash # Linux/macOS 安装命令 curl -fsSL https://ollama.ai/install.sh | sh # 启动服务 ollama serve # 下载并运行模型(例如llama2) ollama run llama2 ``` - 优点:一键安装,支持模型下载与交互式命令行[^3]。 - 扩展:可通过`Open-WebUI`添加图形界面[^3]。 - **LM Studio**(适合桌面端用户): - 下载安装包后直接运行,支持离线模型加载与对话。 ##### **2. 源码部署(适合开发者)** - **Transformers库(Hugging Face)**: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b") tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b") ``` - 需提前申请模型权限并配置API密钥[^1]。 - **vLLM框架**(高性能推理): ```bash # 安装vLLM pip install vllm # 启动服务 python -m vllm.entrypoints.api_server --model meta-llama/Llama-2-7b-chat-hf ``` ##### **3. 进阶部署(容器化)** - **Docker + Open-WebUI**: ```bash # 拉取镜像并运行 docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui ghcr.io/open-webui/open-webui:main ``` - 提供Web界面,支持文件上传与多模型切换。 --- #### **三、验证部署** 1. 访问`http://localhost:3000`(Open-WebUI)或通过命令行与模型交互。 2. 测试推理任务(如生成文本、问答等),观察响应速度与资源占用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值