快来!AI绘画Stable Diffusion 3终于开源了,更强的文字渲染和理解力,12G显卡可跑!

大家好,我是设计师阿威

Stable Diffusion 3终于开源了,2B参数的Stable Diffusion 3 Medium模型已经可以在HuggingFace上下载了!如无法科学上网的小伙伴我也准备好了网盘资料,请看文末扫描获取哦!

Stable Diffusion 3 Medium的参数量为2B,大小适中,它非常适合在消费级个人电脑和笔记本电脑上运行,同时也适用于企业级GPU。

SD3 Medium的优势如下所示:

  • 照片级真实感:克服了手部和面部常见的伪影问题,无需复杂的工作流程即可提供高质量的图像。

  • 提示词遵循性:理解涉及空间关系、构图元素、动作和风格的复杂提示。

  • 文字能力:借助Diffusion Transformer架构,在生成无伪影和拼写错误的文本方面取得了前所未有的成果。

  • 资源高效:由于其低VRAM占用,非常适合在标准消费级GPU上运行,且不降低性能。

  • 微调:能够从小数据集中吸收细微的细节,使其非常适合定制化。

另外,StabilityAI与NVIDIA合作,利用TensorRT来提升所有Stable Diffusion模型的性能,包括Stable Diffusion 3 Medium。经过TensorRT优化的版本,性能提升了50%,Stable Diffusion 3 Medium的TensorRT优化版本也将发布。

而且,AMD也已经针对包括AMD最新的APU、消费级GPU和MI-300X企业级GPU在内的各种AMD设备,对SD3 Medium的推理进行了优化。

除了模型之外,StabilityAI还直接放出了SD3的ComfyUI工作流:

实测comfyui上12GB显存就可以跑了:

简单测试一下例子:

人物写真还不错

A closeup shot of a beautiful teenage girl in a white dress wearing small silver earrings in the garden, under the soft morning light

文字能力非常OK

A realistic standup pouch product photo mockup decorated with bananas, raisins and apples with the words “ORGANIC SNACKS” featured prominently

A magazine quality shot of a delicious salmon steak, with rosemary and tomatoes, and a cozy atmosphere

A pixar style illustration of a happy hedgehog, standing beside a wooden signboard saying “SUNFLOWERS”, in a meadow surrounded by blooming sunflowers

能够非常精准的理解提示词

an old apothecary. On the counter there are three old potions: a blue potion with the handwritten label “Mana” a green potion with the label “Health”, a red potion with the label “Poison”

A horse riding an astronaut.

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
### Dify与Stable Diffusion的技术集成及其实现 #### 1. 技术背景 Dify 是一款大的 AI 平台,能够帮助开发者轻松构建复杂的生成式人工智能应用。而 Stable Diffusion 则是一种开源的深度学习模型,专注于高质量图像生成的任务。两者的结合使得用户可以通过简单的自然语言描述生成复杂且逼真的图片。 --- #### 2. 使用 Dify Stable Diffusion 进行文生图的工作流实现 ##### 方法一:通过 API 调用接口 这种方式允许用户利用远程服务器上的 Stable Diffusion 模型资源来生成图片。具体过程如下: - 用户输入一段文字作为提示词(Prompt),这些提示会被传递到 Dify 中的大规模预训练模型。 - 大模型解析用户的意图并将之转化为适合 Stable Diffusion 的格式化提示语句[^1]。 - 接下来,触发对远程 SD 服务端口发起请求操作,最终获取由 Base64 编码表示的目标图形数据,并将其渲染为可视化的 Markdown 形态展示给前端使用者查看[^1]。 以下是 Python 示例代码片段用于演示如何发送 HTTP 请求至指定的服务地址从而获得所需的结果: ```python import requests from base64 import b64decode def generate_image(prompt_text, api_url): payload = {"prompt": prompt_text} response = requests.post(api_url, json=payload) if response.status_code == 200: image_data = b64decode(response.json()["image_base64"]) with open("output.png", "wb") as f: f.write(image_data) print("Image generated successfully.") else: raise Exception(f"Error generating image: {response.text}") generate_image("A futuristic cityscape under neon lights", "http://your-stablediffusion-api-endpoint/generate") ``` ##### 方法二:本地部署 Stable Diffusion 对于希望完全掌控整个流程或者网络状况不佳的情况而言,在个人计算机上自行搭建一套完整的解决方案不失为明智之举。此方法主要涉及以下几个方面: ###### 步骤概述 1. **准备环境** - 确认操作系统版本兼容性以及必要的硬件驱动程序已经就绪,比如 CUDA Toolkit 对于 NVIDIA 显卡的支持情况至关重要[^2]。 2. **克隆仓库并调整配置文件** - 访问官方存储库链接 `https://github.com/AUTOMATIC1111/stable-diffusion-webui` 下载最新版源码包。 - 解压后定位到根目录下的启动脚本位置,按照说明文档指引增添特定命令行参数以便优化性能表现[^2]。 3. **执行初始化流程** - 启动批处理文件之前务必确认具备良好的互联网连接状态以顺利完成依赖项加载环节。 - 成功之后应该可以看到默认浏览器弹出交互界面供进一步探索尝试[^2]。 4. **验证核心功能有效性** - 尝试简单关键词组合测试基础绘图效果是否满足预期需求。 - 如果计划长期使用建议额外安装一些实用插件提升用户体验度,例如多国语言支持组件让全球范围内的多人群受益匪浅。 下面是采用 PaddlePaddle 生态圈内封装好的模块简化开发难度的一个例子: ```python from PIL import Image import paddlehub as hub module = hub.Module(name='stable_diffusion') result = module.generate_image( text_prompts="An artistic representation of autumn leaves falling gently onto water surface", output_dir='./generated_images' ) print("Generated images saved at:", result['save_path']) ``` 需要注意的是当前版本可能存在一定程度上的局限性特别是针对非拉丁字符集的内容创作场景下可能需要额外适配措施才能达到理想水准[^3]。 --- #### 3. 总结 无论是借助云端计算力还是自主建设基础设施都可以有效达成目标只是各有优劣之处需根据实际应用场景灵活抉择。上述介绍涵盖了从理论层面理解原理机制直至实践层面上手演练全过程希望能够对你有所帮助! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值