知乎原文:叫我Alonzo就好了
前言
最近一段时间,正当所有人都在为OpenAI发布Sora狂欢时,Stability AI更是推出了Stable Diffusion 3的技术报告。**这两项技术不约而同都采用了Diffusion Transformer的架构设计,之前我也在我的文章中进行了解读:Diffusion Transformer究竟好在哪里?感兴趣的朋友可以移步这篇文章,里面也对Stable Diffusion、Transformer、VQGAN等一些前置知识作了介绍。
值得注意的是,Stable Diffusion 3的强大性能其实并不仅限于Diffusion Transformer在架构上所带来的增益,其在提示词、图像质量、文字拼写方面的能力都得到了极大的提升。那么究竟是什么让Stable Diffusion 3如此强大?今天我们就从Stable Diffusion 3的技术报告中解读stable diffusion 3强大背后的技术原理。
研究动机
Stable Diffusion 3的研究动机其实是从数据加噪的forward路径上出发的。 作者指出,如果forward路径并非最优路径,那么就会导致扩散模型在训练过程中没有办法从输入加噪数据中完全去除噪声,那么在测试的过程中,模型就会生成一些带有artifacts的结果,例如灰度图像。
特别地,forward的选择也会影响backward路径的计算复杂度,也就是采样效率(sampling efficiency),进一步影响到图片生成的速度。
尽管我们可以整合额外采样步数,通过曲线路径来尽可能地仿真最优路径,但是曲线路径仍然存在错误累计的问题。对此,直线路径(也就是通过一步直接进行仿真)会减少错误累积的发生。
对于这个问题,有一个特别的解决方案,也就是rectified flow。recitified flow已经在小中型的实验上证明了其有效性,而在Stable Diffusion 3的设定中,模型规模从800M进一步扩大至了8Bÿ