析合树是一种解决连续段问题的数据结构。
比如这样的一个问题:给你一个
1
1
1到
n
n
n的排列,然后有一堆询问,每次询问区间
[
l
,
r
]
[l,r]
[l,r],问包含
[
l
,
r
]
[l,r]
[l,r]的最小连续段是什么。
也就是这题
所谓的连续段,就是满足
m
a
x
l
.
.
r
−
m
i
n
l
.
.
r
+
1
=
r
−
l
+
1
max_{l..r}-min_{l..r}+1=r-l+1
maxl..r−minl..r+1=r−l+1的连续段。
推荐这篇:https://oi-wiki.org/ds/divide-combine/
里面有比较系统的介绍。
虽然没有线性的构造方法
关于析合树,有各种各样的定义和性质,那些东西就是叫人看不懂的……。
所以我在这里就简单地说一说。
先说个性质:对于两个连续段
[
l
1
,
r
1
]
[l_1,r_1]
[l1,r1]和
[
l
2
,
r
2
]
[l_2,r_2]
[l2,r2]
如果它们有交集(即
[
l
2
,
r
1
]
[l_2,r_1]
[l2,r1]),则交集也是连续段。
并且它们的并集也是连续段。
这个不用解释吧……
有一个叫本源连续段的概念,不过具体指什么,我也不太懂……所以就不说了……
估计学到差不多的时候看字面意思就知道是什么东西了……
盗张图来瞅一瞅。
析合树的每个点都表示一个连续段,确切地说,是本源连续段。
析合树有两种点:析点和合点。
析点满足所有相邻儿子都不能合并成个连续段,合点满足所有相邻儿子都能合并成个连续段(可以看成儿子都是顺序或倒序的)。
有个很显然的性质是,析点至少有四个节点,合点至少有两个节点。
至于最下面的叶子结点就不要管了……程序实现时为了方便我会将其设为析点。
如果建出了析合树,前面的那个问题就有的答案:求出两个点的
L
C
A
LCA
LCA,如果是析点,则就是析点代表的区间。如果是合点,则就是
l
l
l和
r
r
r的祖先在
L
C
A
LCA
LCA下的儿子之间组成的区间。
接下来就是最重要的问题:如何建析合树。
建析合树用的是增量法,也就是一个一个点加进去。
维护一个栈,表示目前形成的森林的根节点。
假设加进去的点为
x
x
x,栈顶为
t
o
p
top
top。
- t o p top top为合点,并且 t o p top top的最后一个儿子可以和 x x x合并。这个时候就直接将 x x x作为 t o p top top的儿子,然后将 t o p top top递归下去继续干。
- t o p top top和 x x x可以合并。新建一个合点,作为 t o p top top和 x x x的父亲,然后将它们的父亲递归下去。
- 往前面找若干个节点,满足这若干个节点和 x x x可以合并。然后新建一个析点,将这些点都作为它的儿子,然后将它递归下去。
- 若栈为空,或者第三个操作没有找到, x x x节点就加入栈顶。
然而直接这样建树是
O
(
n
2
)
O(n^2)
O(n2)的。上面第三个操作的时候可能一直往前找都找不到,那这样一次就是
O
(
n
)
O(n)
O(n)的了。
考虑直接在这方面优化。一个简单的思路是求出
L
i
L_i
Li,表示
[
L
i
,
i
]
[L_i,i]
[Li,i]以
i
i
i为右端点的最长的连续段。
这样在第三个操作的时候就能够明确最多找到哪里,并且,最后面这些节点全部都会合并起来,栈顶的节点就是
[
L
i
,
i
]
[L_i,i]
[Li,i]
问题转化成了如何求
L
i
L_i
Li
看看这题。用那个线段树的做法就行了。
大体思路就是维护两个单调栈,然后在线段树上维护。
求出了
L
i
L_i
Li,那么建树的时间复杂度就是
O
(
n
)
O(n)
O(n)的了。
可惜预处理需要
O
(
n
lg
n
)
O(n \lg n)
O(nlgn)的时间来预处理。
放个代码:
using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cassert>
#define N 100010
int n,a[N];
int smn[N],smx[N],tn,tx;
int mn[N*4],tag[N*4];
int L[N];
inline void pushdown(int k){
if (tag[k]){
mn[k<<1]+=tag[k],mn[k<<1|1]+=tag[k];
tag[k<<1]+=tag[k],tag[k<<1|1]+=tag[k];
tag[k]=0;
}
}
void add(int k,int l,int r,int st,int en,int c){
if (st<=l && r<=en){
mn[k]+=c;
tag[k]+=c;
return;
}
pushdown(k);
int mid=l+r>>1;
if (st<=mid)
add(k<<1,l,mid,st,en,c);
if (mid<en)
add(k<<1|1,mid+1,r,st,en,c);
mn[k]=min(mn[k<<1],mn[k<<1|1]);
}
int find(int k,int l,int r,int st,int en,int v){
if (mn[k]>v)
return 0;
if (l==r)
return l;
pushdown(k);
int mid=l+r>>1,res=0;
if (st<=mid)
res=find(k<<1,l,mid,st,en,v);
if (!res && mid<en)
res=find(k<<1|1,mid+1,r,st,en,v);
return res;
}
int cnt;
struct Node{
Node *fa,*lst;
int mn,mx;
bool xihe;
int l,r;
} d[N*2],*null=d;
int num[N];
Node *st[N*2];
int top;
inline int ok(Node *x,Node *y){
if (x->mx+1==y->mn)
return 1;
if (x->mn-1==y->mx)
return -1;
return 0;
}
void insert(Node *x){
int tmp;
if (top && st[top]->xihe==1 && (tmp=ok(st[top]->lst,x))){
if (tmp==1)
st[top]->mx=x->mx;
else
st[top]->mn=x->mn;
st[top]->lst=x;
st[top]->r=x->r;
x->fa=st[top--];
insert(x->fa);
return;
}
if (top && (tmp=ok(st[top],x))){
if (tmp==1)
d[++cnt]={null,x,st[top]->mn,x->mx,1,st[top]->l,x->r};
else
d[++cnt]={null,x,x->mn,st[top]->mx,1,st[top]->l,x->r};
st[top--]->fa=x->fa=&d[cnt];
insert(x->fa);
return;
}
for (int i=top,mn=x->mn,mx=x->mx;i && L[x->r]<=st[i]->r;--i){
mn=min(mn,st[i]->mn);
mx=max(mx,st[i]->mx);
if (mx-mn+1==x->r-st[i]->l+1){
d[++cnt]={null,x,mn,mx,0,st[i]->l,x->r};
x->fa=&d[cnt];
for (;top>=i;--top)
st[top]->fa=&d[cnt];
insert(x->fa);
return;
}
}
st[++top]=x;
}
int f[N*2][18],dep[N*2];
void getdep(int x){
if (dep[x] || x==0)
return;
getdep(f[x][0]);
dep[x]=dep[f[x][0]]+1;
}
inline void getans(int u,int v){
if (dep[u]>dep[v]){
for (int k=dep[u]-dep[v],i=0;k;k>>=1,++i)
if (k&1)
u=f[u][i];
}
else
for (int k=dep[v]-dep[u],i=0;k;k>>=1,++i)
if (k&1)
v=f[v][i];
for (int i=17;i>=0;--i)
if (f[u][i]!=f[v][i])
u=f[u][i],v=f[v][i];
if (d[f[u][0]].xihe==0)
printf("%d %d\n",d[f[u][0]].l,d[f[v][0]].r);
else
printf("%d %d\n",d[u].l,d[v].r);
}
int main(){
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
scanf("%d",&n);
for (int i=1;i<=n;++i)
scanf("%d",&a[i]);
for (int i=1;i<=n;++i){
for (;tn && a[smn[tn]]>a[i];--tn)
add(1,1,n,smn[tn-1]+1,smn[tn],a[smn[tn]]-a[i]);
for (;tx && a[smx[tx]]<a[i];--tx)
add(1,1,n,smx[tx-1]+1,smx[tx],a[i]-a[smx[tx]]);
smn[++tn]=i,smx[++tx]=i;
add(1,1,n,i,i,i);
L[i]=find(1,1,n,1,i,i);
}
st[0]=null;
*null={null,null,0,0,0,0,0};
for (int i=1;i<=n;++i){
d[num[i]=++cnt]={null,null,a[i],a[i],0,i,i};
insert(&d[cnt]);
}
assert(top==1 && st[top]->l==1 && st[top]->r==n);
for (int i=1;i<=cnt;++i)
f[i][0]=d[i].fa-d;
for (int i=1;i<=cnt;++i)
getdep(i);
for (int i=1;i<=17;++i)
for (int j=1;j<=cnt;++j)
f[j][i]=f[f[j][i-1]][i-1];
int Q;
scanf("%d",&Q);
while (Q--){
int l,r;
scanf("%d%d",&l,&r);
getans(num[l],num[r]);
}
return 0;
}
到此为止了么?
不,实际上有真正的
O
(
n
)
O(n)
O(n)解法。
对于一个区间
[
l
,
r
]
[l,r]
[l,r],找到
[
l
,
r
]
[l,r]
[l,r]中的最大值
m
x
mx
mx和最小值
m
n
mn
mn。
然后找到值为
[
m
n
,
m
x
]
[mn,mx]
[mn,mx]的最右位置
R
R
R。显然,如果
r
<
R
r<R
r<R,那么以
r
r
r为右端点的最大区间左端点小于
l
l
l。也就是说,不存在
L
<
l
L<l
L<l的区间
[
L
,
r
]
[L,r]
[L,r]包含
[
l
,
r
]
[l,r]
[l,r]。
在做第三个操作的时候,沿路记下
m
n
mn
mn和
m
x
mx
mx,求出
R
R
R。如果
r
<
R
r<R
r<R,就不用做下去了,因为
R
R
R只会越来越大。
求的时候直接用
R
M
Q
RMQ
RMQ,
O
(
1
)
O(1)
O(1)处理询问。
这是个非常好的优化,尽管它看起来仍然是
O
(
n
2
)
O(n^2)
O(n2)的,但是数据似乎不怎么卡。
为了满足强迫症的想法,我们使劲将它优化到
O
(
n
)
O(n)
O(n)。
对于栈中的每个点,可以记录一个
f
a
i
l
fail
fail指针表示它之前找到的第一个
r
<
R
r<R
r<R的地方。
那么以后就不需要暴力找,只需要跳
f
a
i
l
fail
fail来找。
每条
f
a
i
l
fail
fail边只会跳
O
(
1
)
O(1)
O(1)次(跳了意味着这次
R
≤
r
R\leq r
R≤r,如果在后来还没有成功,
f
a
i
l
r
fail_r
failr一定会指向一个更前的点。这样在后来跳的时候,再也不会经过这条边。)
所以这样做的时间复杂度是
O
(
n
)
O(n)
O(n)的!
然而,我们愕然发现预处理的时间复杂度依然是
O
(
n
lg
n
)
O(n\lg n)
O(nlgn)……
先放个代码:
using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
//#include <cassert>
#define N 100010
int lg[N];
int n,a[N];
int mx[N][17];
inline int query(int l,int r){
int m=lg[r-l+1];
return max(mx[l][m],mx[r-(1<<m)+1][m]);
}
int cnt;
struct Node{
Node *fa,*lst;
int mn,mx;
bool xihe;
int l,r;
} d[N*2],*null=d;
int num[N];
int top;
Node *st[N*2];
int fail[N*2],mnf[N*2],mxf[N*2];
inline int ok(Node *x,Node *y){return x->mx+1==y->mn?1:(x->mn-1==y->mx?-1:0);}
void insert(Node *x){
if (!top){
st[++top]=x;
fail[top]=0;
mnf[top]=x->mn;
mxf[top]=x->mx;
return;
}
int tmp;
if (st[top]->xihe==1 && (tmp=ok(st[top]->lst,x))){
if (tmp==1)
st[top]->mx=x->mx;
else
st[top]->mn=x->mn;
st[top]->lst=x;
st[top]->r=x->r;
x->fa=st[top];
top--;
insert(x->fa);
return;
}
if (tmp=ok(st[top],x)){
if (tmp==1)
d[++cnt]={null,x,st[top]->mn,x->mx,1,st[top]->l,x->r};
else
d[++cnt]={null,x,x->mn,st[top]->mx,1,st[top]->l,x->r};
st[top]->fa=x->fa=&d[cnt];
top--;
insert(x->fa);
return;
}
for (int i=top,mn=x->mn,mx=x->mx;i;mn=min(mn,mnf[i]),mx=max(mx,mxf[i]),i=fail[i]){
mn=min(mn,st[i]->mn);
mx=max(mx,st[i]->mx);
if (query(mn,mx)>x->r){
st[++top]=x;
fail[top]=i;
mnf[top]=mn;
mxf[top]=mx;
return;
}
if (mx-mn+1==x->r-st[i]->l+1){
d[++cnt]={null,x,mn,mx,0,st[i]->l,x->r};
x->fa=&d[cnt];
for (;top>=i;--top)
st[top]->fa=&d[cnt];
insert(x->fa);
return;
}
}
}
int f[N*2][18],dep[N*2];
void getdep(int x){
if (dep[x] || x==0)
return;
getdep(f[x][0]);
dep[x]=dep[f[x][0]]+1;
}
inline void getans(int u,int v){
if (dep[u]>dep[v]){
for (int k=dep[u]-dep[v],i=0;k;k>>=1,++i)
if (k&1)
u=f[u][i];
}
else
for (int k=dep[v]-dep[u],i=0;k;k>>=1,++i)
if (k&1)
v=f[v][i];
for (int i=17;i>=0;--i)
if (f[u][i]!=f[v][i])
u=f[u][i],v=f[v][i];
if (d[f[u][0]].xihe==0)
printf("%d %d\n",d[f[u][0]].l,d[f[v][0]].r);
else
printf("%d %d\n",d[u].l,d[v].r);
}
int main(){
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
scanf("%d",&n);
lg[0]=0,lg[1]=0;
for (int i=2;i<=n;++i)
lg[i]=lg[i>>1]+1;
for (int i=1;i<=n;++i)
scanf("%d",&a[i]);
for (int i=1;i<=n;++i)
mx[a[i]][0]=i;
for (int i=1;1<<i<=n;++i)
for (int j=1;j+(1<<i)-1<=n;++j)
mx[j][i]=max(mx[j][i-1],mx[j+(1<<i-1)][i-1]);
st[0]=null;
*null={null,null,0,0,0,0,0};
for (int i=1;i<=n;++i){
d[num[i]=++cnt]={null,null,a[i],a[i],0,i,i};
insert(&d[cnt]);
}
for (int i=1;i<=cnt;++i)
f[i][0]=d[i].fa-d;
for (int i=1;i<=cnt;++i)
getdep(i);
for (int i=1;i<=17;++i)
for (int j=1;j<=cnt;++j)
f[j][i]=f[f[j][i-1]][i-1];
int Q;
scanf("%d",&Q);
while (Q--){
int l,r;
scanf("%d%d",&l,&r);
getans(num[l],num[r]);
}
return 0;
}
接着我们考虑如何处理
[
l
,
r
]
[l,r]
[l,r]的询问。
其实只要处理出所有
i
∈
[
l
,
r
)
i \in [l,r)
i∈[l,r)的
[
i
,
i
+
1
]
[i,i+1]
[i,i+1]的并,就是
[
l
,
r
]
[l,r]
[l,r]询问的答案。
对于栈中的每个节点,处理出
[
l
,
r
]
[l,r]
[l,r]的答案(好像是
[
l
,
r
)
[l,r)
[l,r)?)。对于每条
f
a
i
l
fail
fail边,处理出中间答案的并。
所以现在的问题是求所有
[
i
,
i
+
1
]
[i,i+1]
[i,i+1]的答案。
实际上这可以看成许多个区间询问,然而我们要
O
(
n
)
O(n)
O(n)来预处理出这些东西。
区间询问怎么预处理?有个很牛的方法是
O
(
n
)
O(n)
O(n)建出笛卡尔树,然后变成
L
C
A
LCA
LCA问题。用
T
a
r
j
a
n
−
L
C
A
Tarjan-LCA
Tarjan−LCA来求。这样就可以达到
O
(
n
)
O(n)
O(n)了。
或者也可以在建树之后用
+
1
−
1
R
M
Q
+1-1RMQ
+1−1RMQ来解决,然而我没有打过。
所以实际上
O
(
n
)
O(n)
O(n)好像没有什么用啊……毕竟如果出题,肯定不只是析合树,然而其它操作总是要
lg
\lg
lg级别的……
而且这样代码复杂度还很恐怖……
我没打过,别找我拿标程……
如果真的要打析合树,用线段树的
O
(
n
lg
n
)
O(n\lg n)
O(nlgn)方法似乎是一种不错的选择,因为思路比较简单。
或者用
O
(
n
lg
n
)
O(n\lg n)
O(nlgn)预处理
S
T
ST
ST表来搞,还有记录
f
a
i
l
fail
fail边,这样代码长度会短一些。
至于纯正的
O
(
n
)
O(n)
O(n)……就在嘴巴上说说算了吧……