6525. 【2020.4.1模拟】Valleys

题目

给你一个地图,每个格子上的数表示其高度。
“山谷”的定义是:某个周围高度都大于它的、并且没有洞的块。
有洞的定义是:将块删了之后,剩余的鸽子不能通过点相交形成一个连通块。
求所有山谷的大小之和。


正解

思考历程就没有了,一开始根本就没有好好地思考这道题。

先考虑如果没有洞该怎么做。这就是个小学生题:用并查集来维护块。将高度从小到大排序,对一个点进行操作时,将它相邻的、高度小于等于它点和它所在块合并。顺便记一下点数,就可以求出答案了。

现在我们的问题是,如何快速地判断某个块是否有洞。
方法似乎很多,这里就介绍一下平面图欧拉公式:
V V V为点数, E E E为边数, F F F为区域数,则 V + F = E + 2 V+F=E+2 V+F=E+2

考虑一个合法的山谷。首先计算一下有多少个小正方形(块内边长为 1 1 1的互相连通的点形成的正方形),记为 S S S
如果这个山谷合法,那么 F = S + 1 F=S+1 F=S+1。后面的这个 1 1 1是最外面的那个块。
如果不合法,这条等式就不成立了。

于是我们只需维护 V V V E E E S S S。对于 S S S的维护,注意到新生成的小正方形的格点肯定包含当前点,枚举一下就可以方便地维护。


代码

using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 800
#define ll long long
int n,m;
int id[N][N],h[N*N];
bool vis[N*N];
#define at(x,y) h[id[x][y]]
struct DOT{int x,y;} d[N*N];
inline bool cmpd(DOT a,DOT b){return at(a.x,a.y)<at(b.x,b.y);}
const int dx[4]={1,0,-1,0};
const int dy[4]={0,1,0,-1};
int fa[N*N],V[N*N],E[N*N],sq[N*N];
int getfa(int x){return fa[x]==x?x:fa[x]=getfa(fa[x]);}
#define in(x,y,z) ((1<=x && x<=n && 1<=y && y<=n) && getfa(id[x][y])==z)
int main(){
//	freopen("in.txt","r",stdin);
	freopen("valleys.in","r",stdin);
	freopen("valleys.out","w",stdout);
	scanf("%d",&n);
	for (int i=1;i<=n;++i)
		for (int j=1;j<=n;++j){
			id[i][j]=++m;
			d[m]={i,j};
			scanf("%d",&h[m]);
		}
	sort(d+1,d+m+1,cmpd);
	for (int i=1;i<=m;++i)
		fa[i]=i,V[i]=1,E[i]=0,sq[i]=0;
	ll ans=0;
	for (int i=1;i<=m;++i){
		int x=d[i].x,y=d[i].y,z=id[x][y];
		vis[z]=1;
		for (int j=0;j<4;++j){
			int tx=x+dx[j],ty=y+dy[j],tz=id[tx][ty];
			if (tx<1 || tx>n || ty<1 || ty>n || !vis[tz])
				continue;
			int r=getfa(tz);
			if (r!=z){
				fa[r]=z;
				V[z]+=V[r];
				E[z]+=E[r];
				sq[z]+=sq[r];
			}
			E[z]++;
		}
		for (int j=0;j<4;++j){
			int k=(j+1)%4;
			if (in(x+dx[j],y+dy[j],z) && in(x+dx[k],y+dy[k],z) && in(x+dx[j]+dx[k],y+dy[j]+dy[k],z))
				sq[z]++;
		}
		if (i==m || at(x,y)!=at(d[i+1].x,d[i+1].y))
			ans+=(E[z]-V[z]+2-sq[z]==1?V[z]:0);
	}
	printf("%lld\n",ans);
	return 0;
}

总结

那些奇奇怪怪的公式定理,真该积累一些呢……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值