看着身边的大佬们这么快就学了各种筛,很是紧张啊……
接下来强行学习一下
简介
用途: O ( n 2 3 ) O(n^\frac{2}{3}) O(n32)求积性函数的前缀和。
本质就是推式子。
设有某个函数
f
(
i
)
f(i)
f(i),我们要求
∑
i
=
1
n
f
(
i
)
\sum_{i=1}^nf(i)
∑i=1nf(i)
根据具体情况建出辅助函数
g
(
i
)
g(i)
g(i)。求狄利克雷卷积
h
=
g
∗
f
h=g*f
h=g∗f
记
S
(
n
)
=
∑
i
=
1
n
f
(
i
)
S(n)=\sum_{i=1}^n f(i)
S(n)=∑i=1nf(i)
开始推式子:
∑
i
=
1
n
h
(
i
)
=
∑
i
=
1
n
∑
d
∣
i
g
(
d
)
f
(
i
d
)
=
∑
d
=
1
n
g
(
d
)
∑
i
=
1
⌊
n
d
⌋
f
(
i
)
=
∑
d
=
1
n
g
(
d
)
S
(
⌊
n
d
⌋
)
\sum_{i=1}^n h(i)=\sum_{i=1}^n\sum_{d|i}g(d)f(\frac{i}{d}) \\ =\sum_{d=1}^ng(d)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}f(i) \\ =\sum_{d=1}^ng(d)S(\lfloor\frac{n}{d}\rfloor)
i=1∑nh(i)=i=1∑nd∣i∑g(d)f(di)=d=1∑ng(d)i=1∑⌊dn⌋f(i)=d=1∑ng(d)S(⌊dn⌋)
将右边式子第一项拆出来:
=
g
(
1
)
S
(
n
)
+
∑
d
=
2
n
g
(
d
)
S
(
⌊
n
d
⌋
)
=g(1)S(n)+\sum_{d=2}^ng(d)S(\lfloor\frac{n}{d}\rfloor)
=g(1)S(n)+d=2∑ng(d)S(⌊dn⌋)
移项得
g
(
1
)
S
(
n
)
=
∑
i
=
1
n
h
(
i
)
−
∑
d
=
2
n
g
(
d
)
S
(
⌊
n
d
⌋
)
g(1)S(n)=\sum_{i=1}^n h(i)-\sum_{d=2}^ng(d)S(\lfloor\frac{n}{d}\rfloor)
g(1)S(n)=∑i=1nh(i)−∑d=2ng(d)S(⌊dn⌋)
这个就是杜教筛的套路式了。
使用杜教筛的时候,注意
∑
i
=
1
n
h
(
i
)
\sum_{i=1}^n h(i)
∑i=1nh(i)和
g
(
i
)
g(i)
g(i)要能够快速地求出来。
用整除分块来搞,时间复杂度据说是
O
(
n
2
3
)
O(n^{\frac{2}{3}})
O(n32)
于是,学会这个套路之后,问题主要就是如何选取 g g g(以及 h h h)。
实现
洛谷P4213 【模板】杜教筛(Sum)
注意实现的时候,最好把
n
n
n比较小的
S
(
n
)
S(n)
S(n)都预处理出来。
否则哈希容易爆炸。
using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <unordered_map>
#define ll long long
#define M 1000000
int n;
int p[M+10],np;
bool inp[M+10];
int phi[M+10],mu[M+10];
ll sum1[M+10],sum2[M+10];
unordered_map<int,ll> ans1,ans2;
ll get1(int n){
if (n<=M)
return sum1[n];
auto p=ans1.find(n);
if (p!=ans1.end())
return p->second;
ll res=(ll)(n+1)*n>>1;
for (unsigned i=2,j=2;i<=n;i=j+1){
j=n/(n/i);
res-=(j-i+1)*get1(n/i);
}
return ans1[n]=res;
}
ll get2(int n){
if (n<=M)
return sum2[n];
auto p=ans2.find(n);
if (p!=ans2.end())
return p->second;
ll res=1;
for (unsigned i=2,j=2;i<=n;i=j+1){
j=n/(n/i);
res-=(j-i+1)*get2(n/i);
}
return ans2[n]=res;
}
int main(){
phi[1]=mu[1]=1;
for (int i=2;i<=M;++i){
if (!inp[i]){
p[++np]=i;
phi[i]=i-1;
mu[i]=-1;
}
for (int j=1;j<=np && i*p[j]<=M;++j){
inp[i*p[j]]=1;
if (i%p[j]==0){
phi[i*p[j]]=phi[i]*p[j];
mu[i*p[j]]=0;
break;
}
phi[i*p[j]]=phi[i]*(p[j]-1);
mu[i*p[j]]=-mu[i];
}
}
for (int i=1;i<=M;++i){
sum1[i]=sum1[i-1]+phi[i];
sum2[i]=sum2[i-1]+mu[i];
}
int T;
scanf("%d",&T);
while (T--){
scanf("%d",&n);
printf("%lld %lld\n",get1(n),get2(n));
}
return 0;
}
参考资料
杜教筛