数位DP是我的噩梦。
现在初三了,却没AC过数位DP的题目。
感觉数位DP都是毒瘤……
题目
hdu不用登录也可以进去,所以就不把题目copy到这里来了。
题目大意
求区间 [ n , m ] [n,m] [n,m]中,不含有 4 4 4和 62 62 62的数的个数。
解析
数位DP的难点主要在于不能出界。
因为这个东西,我被卡了不知道多少年……
先不要想出界,那么显然,状态可以这么设:
设
f
i
,
j
f_{i,j}
fi,j表示做到第
i
i
i位,并且这一位为
j
j
j的方案数。
方程显然
if (j!=4 && !(j==6 && k==2))
f[i][j]+=f[i-1][k];
所以我们可以先预处理出
f
f
f数组。
对于区间
[
n
,
m
]
[n,m]
[n,m],类似前缀和,我们可以将其转化成求
[
1
,
x
]
[1,x]
[1,x]。
接下来就是最毒瘤的出界问题了。
比如
x
=
314
x=314
x=314
那么
f
2
,
0
,
f
2
,
1
,
f
2
,
2
f_{2,0},f_{2,1},f_{2,2}
f2,0,f2,1,f2,2可以计入贡献,因为前面的数字不管怎么变,都必定不会出界。
但是
f
2
,
3
f_{2,3}
f2,3是不可以直接计入贡献的。
所以咋办?
我们可以继续下一位,计算
x
=
14
x=14
x=14时的贡献,当然,要记录一下上一次最后的数,在计入贡献前要先判断是否合法。
因为我们计算的都是小于
x
x
x的贡献,所以在计算之前我们要先将
x
x
x加一
具体见下面的代码。
代码
using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define MAXM 1000000
int n,m;
int f[10][10];
int pow10[10];
void init();
int getans(int);
int main(){
pow10[0]=1;
for (int i=1;i<=9;++i)
pow10[i]=pow10[i-1]*10;
init();
do{
scanf("%d%d",&n,&m);
if (n==0 && m==0)
return 0;
printf("%d\n",getans(m)-getans(n-1));
}
while (1);
return 0;
}
void init(){
for (int i=0;i<=9;++i)
f[0][i]=(i!=4);//i!=4时就为1
for (int i=1;i<=6;++i)
for (int j=0;j<=9;++j){
if (j==4)
continue;
for (int k=0;k<=9;++k)
f[i][j]+=f[i-1][k];
if (j==6)
f[i][j]-=f[i-1][2];//将j==6和k==2不合法的贡献减掉
}
}
int getans(int x){
x++;//因为下面的算法计算的是小于x的贡献,所以要先x++
if (x<0)
return 0;
int res=0,w=log10(x);//w为x的位数
for (int i=w,lst=0;i>=0;--i){
int s=x/pow10[i]%10;//求出第i为的贡献
for (int j=0;j<s;++j)
res+=f[i][j];//将小于s的贡献全部加上(因为前面的数怎么变都不可能越界)
if (lst==6 && 2<s)
res-=f[i][2];//同样将不合法的贡献减去
if (s==4 || lst==6 && s==2)//如果这个时候出现不合法的情况,那么后面的都是不合法的,直接退出
break;
lst=s;
}
return res;
}
–
总结
数位DP最难的地方就是判断出界。
所以我们应该从高位到低位逐个判断。
保证范围小于边界。