=========================================================================
(1)B+树索引:所有数据存储在叶子节点,复杂度为O(logn),适合范围查询。
(2)哈希索引: 适合等值查询,检索效率高。
哈希索引基于哈希表实现,只有精确匹配索引所有列的查询才有效。对于每一行数据,存储引擎都会对所有的索引列计算一个哈希码,哈希码是一个较小的值,并且不同键值的行计算出来的哈希码也不一样。哈希索引将所有的哈希码存储在索引中,同时在哈希表中保存指向每个数据行的指针。
但是范围查找不适合,因为存储引擎都会为每一行计算一个hash码,hash码都是比较小的,并且不同键值行的hash码通常是不一样的,hash索引中存储的就是Hash码,hash 码彼此之间是没有规律的,且 Hash 操作并不能保证顺序性,所以值相近的两个数据,Hash值相差很远,被分到不同的桶中。这就是为什么hash索引只能进行全职匹配的查询,因为只有这样,hash码才能够匹配到数据。
在MySQL中,只有Memory引擎显示支持哈希索引,这是Memory引擎的默认索引,Memory引擎同时也支持B-Tree索引,指得一提的是,Memory引擎是支持非唯一哈希索引的,如果多个列的哈希值相同,索引会以链表的方式存放多个记录指针到同一个哈希条目中。HASH时间复杂度O(1),链表时间复杂度是O(n)
InnoDB支持Hash索引吗?
-
InnoDB用户无法手动创建哈希索引,这一层上说,InnoDB确实不支持哈希索引;
-
InnoDB会自调优(self-tuning),如果判定建立自适应哈希索引(Adaptive Hash Index, AHI),能够提升查询效率,InnoDB自己会建立相关哈希索引,这一层上说,InnoDB又是支持哈希索引的;
(3)全文索引:只能在文本类型CHAR,VARCHAR,TEXT类型字段上创建全文索引。字段长度比较大时,如果创建普通索引,在进行like模糊查询时效率比较低,这时可以创建全文索引。 MyISAM和InnoDB中都可以使用全文索引。
(1)聚簇索引(主键索引):每个InnoDB表都有一个聚簇索引 ,聚簇索引使用B+树构建,叶子节点存储的数据是整行记录。一般情况下,聚簇索引等同于主键索引,当一个表没有创建主键索引时,InnoDB会自动创建一个ROWID字段来构建聚簇索引。InnoDB创建索引的具体规则如下:
-
如果表定义了PK,则PK就是聚集索引;
-
如果表没有定义PK,则第一个非空unique列是聚集索引;
-
否则,InnoDB会创建一个隐藏的row-id作为聚集索引;
(2)非聚簇索引(二级索引):非聚簇索引就是以非主键创建的索引,叶子节点存储的是主键和索引列。
(1)主键索引:主键索引一般都是在创建表的时候指定,「一个表只有一个主键索引」,特点是「唯一、非空」。
(2)普通索引:普通索引唯一的作用就是加快查询。
(3)组合索引:组合索引是创建一个「多个字段的索引」,这个概念是相对于上上面的单列索引而言,组合索引查询遵循「最左前缀原则」。
(4)唯一索引:唯一索引具有的特点就是唯一性,可以在创建表的时候指定,也可以在创建表后创建。
(5)空间索引:MySQL在5.7之后的版本支持了空间索引,而且支持OpenGIS几何数据模型。MySQL在空间索引这方面遵循OpenGIS几何数据模型规则。
================================================================================
可以从几个维度去看这个问题,查询是否够快,效率是否稳定,存储数据多少,以及查找磁盘次数,为什么不是二叉树,为什么不是平衡二叉树,为什么不是B树,而偏偏是B+树呢?
我们知道哈希结构,类似k-v结构,也就是,key和value是一对一关系。它用于「等值查询」还可以,但是范围查询它是无能为力的哦。
-
当数据量大时,树的高度会比较高(树的高度决定着它的IO操作次数,IO操作耗时大),查询会比较慢。
-
每个磁盘块(节点/页)保存的数据太小(IO本来是耗时操作,每次IO只能读取到一个关键字,显然不合适)
-
如果二叉树特殊化为一个链表,相当于全表扫描
没有很好的利用操作磁盘IO的数据交换特性,也没有利用好磁盘IO的预读能力(空间局部性原理),从而带来频繁的IO操作。
B树的搜索:从根节点开始,对节点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子节点;重复,直到所对应的儿子指针为空,或已经是叶子节点。 关键字集合分布在整颗树中 ,即叶子节点和非叶子节点都存放数据,搜索可能在非叶子节点结束。其搜索性能等价于在关键字全集内做一次二分查找。
假设检索26,先把磁盘块1加载到内存中,然后26与28和46比较,26比28小,然后基于P1子节点引用,P1是指向磁盘块2的一个指针地址,基于P1引用可以通过顺序IO快速加载磁盘块2,然后26与19和23比,26大于23,通过P3子节点引用,加载磁盘块7。然后命中,基于节点数据区加载数据。
B树的特点:
-
不再是二叉搜索,而是m叉搜索;
-
叶子节点,非叶子节点,都存储数据;
-
中序遍历,可以获得所有节点;
名词解释:
局部性原理:软件设计要尽量遵循 “数据读取集中”与“使用到一个数据,大概率会使用其附近的数据”,这样磁盘预读能充分提高磁盘IO;
磁盘预读能力:磁盘读写并不是按需读取,而是按页预读,一次会读一页的数据,每次加载更多的数据,如果未来要读取的数据就在这一页中,可以避免未来的磁盘IO,提高效率;
数据交换特性:操作系统去硬盘读取一次,做一次I/O交换,一次交换数据是4k(Linux默认页大小),交换单位以页为单位,1页就是4k(索引按数据页为单位读写的,在InnoDB中,每个数据页的大小默认是16KB)
它是B-Tree数的变体,也是一种多路搜索树B+Tree和B-Tree基本相同,区别在于B-Tree树非叶子节点和叶子节点都可以存放数据,而B+Tree树关键字存储在叶子节点上,非叶子节点不存真正的数据。(B+树中根到每一个节点的路径长度一样,因此查询速度更稳定;而B树不是这样)
叶子之间,增加了链表,获取所有节点,不再需要中序遍历,直接遍历叶子节点就行;
比如查找28,其实图顶端的28是索引,并不是真实数据,他会继续往下找。
B+Tree与B-Tree比较
①B+Tree范围查找,定位min与max之后,中间叶子节点,就是结果集,不用中序回溯;
②B+Tree磁盘读写能力更强(叶子节点不保存真实数据,因此一个磁盘块能保存的关键字更多,因此每次加载的关键字越多)
③B+Tree扫表和扫库能力更强(B-Tree树需要扫描整颗树,B+Tree树只需要扫描叶子节点)
==========================================================================
准备数据:
CREATE TABLE employee
(
id
int(11) NOT NULL,
name
varchar(255) DEFAULT NULL,
age
int(11) DEFAULT NULL,
date
datetime DEFAULT NULL,
sex
int(1) DEFAULT NULL,
PRIMARY KEY (id
),
KEY idx_age
(age
) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into employee values(1,‘小红’,43,‘2021-01-20’,‘0’);
insert into employee values(2,‘铁蛋’,48,‘2021-01-21’,‘0’);
insert into employee values(3,‘张三’,36,‘2020-01-21’,‘1’);
insert into employee values(4,‘李四’,32,‘2020-01-21’,‘0’);
insert into employee values(5,‘王老五’,37,‘2020-01-21’,‘1’);
insert into employee values(6,‘赵六’,49,‘2021-01-21’,‘0’);
insert into employee values(7,‘小丑’,28,‘2021-01-21’,‘1’);
索引结构图:
(1)非聚簇索引(二级索引)
select * from employee where age=32;
这条 SQL 查询语句执行流程:
-
搜索idx_age索引树,将磁盘块1加载到内存,由于32<37,搜索左路分支,到磁盘寻址磁盘块2。
-
将磁盘块2加载到内存中,在内存继续遍历,找到age=32的记录,取得id = 4.
-
拿到id=4后,回到id主键索引树。
-
搜索id主键索引树,将磁盘块1加载内存,在内存遍历,找到了4,但是B+树索引非叶子节点是不保存数据的。索引会继续搜索4的右分支,到磁盘寻址磁盘块3.
-
将磁盘块3加载内存,在内存遍历,找到id=4的记录,拿到R4这一行的数据,好的,大功告成。
什么是回表查询呢?回表查询简单来说「通过二级索引查询数据,得不到完整的数据行,只能拿到主键ID,需要再次查询主键索引来获得数据行」。
(2)聚簇索引(主键索引)
select * from employee where id = 4;
这条 SQL 查询语句执行流程:
-
搜索id主键索引树,将磁盘块1加载内存,在内存遍历,找到了4,但是B+树索引非叶子节点是不保存数据的。索引会继续搜索4的右分支,到磁盘寻址磁盘块3.
-
将磁盘块3加载内存,在内存遍历,找到id=4的记录,拿到R4这一行的数据,好的,大功告成。
=====================================================================
大家想一个问题,如果不用select *, 而是使用select id,age,执行几次树搜索操作呢?
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)
最后
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)
最后
[外链图片转存中…(img-RW0gd6XJ-1713687708532)]
[外链图片转存中…(img-LUuLvL5z-1713687708532)]
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!