ML-朴素贝叶斯

 

参考《西瓜书》P151

以前对贝叶斯参数的计算过程不是很清楚,在西瓜书里讲的很详细,原来可以把X属性分为离散型与连续型,离散型的话可以直接按照频率计算,连续型的话,要用极大似然估计,首先假设概率密度函数满足一个分布,比如正态分布,然后利用已知的数据集(X,Y),来预测参数。预测过程可以参考逻辑回归推到损失函数。

后验概率 

\fn_cm \begin{align*} P(c|X) &= \frac{P(c)P(X|c)}{P(X)} \\ & = \frac{P(c)}{P(X)}\prod_{i=1}^{n}P(x_{i}|c) \end{align*}

由于对所有类别来说P(X)相同,因此贝叶斯判定准则有

h_{nb} = arg max P(c)\prod_{i=1}^{n}P(x_{i}|c)

显然,朴素贝叶斯分类器的训练过程就是基于训练集D来估计类先验分布概率P(c),并为每个属性估计条件概率P(x_{i}|c)

 

令Dc 表示训练集D中第c类样本组合的集合,若有充足的独立同分布样本,则可容易地估计出类先验概率

P(c) = \frac{|D_{c}|}{|D|}

对离散属性而言,令表示Dc中在第i个属性上取值为xi 的样本组成的集合,则条件概率P(xi | c)可估计为

P(x_{i}|c) = \frac{|D_{c,x_{i}}|}{|D_{c}|}

对连续属性可考虑概率密度函数,假定其中

P(x_{i}|c) = \frac{1}{\sqrt{2\pi }\sigma _{c,i}} exp (-\frac{(x_{i}-\mu _{c,i})^{2}}{2\sigma _{c,i}^{2}})

P(c) = \frac{|D_{c}|+1}{|D|+N}

P(x_{i}|c) = \frac{|D_{c,x_{i}}|+1}{|D_{c}|+N}

全概率公式、贝叶斯公式推导过程

1)条件概率公式

        设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:

                     P(A|B)=P(AB)/P(B)

(2)乘法公式

         1.由条件概率公式得:

                       P(AB)=P(A|B)P(B)=P(B|A)P(A)    

             上式即为乘法公式;

         2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...An-1) > 0 时,有:

                 P(A1A2...An-1An)=P(A1)P(A2|A1)P(A3|A1A2)...P(An|A1A2...An-1)

3)全概率公式

        1. 如果事件组B1,B2,.... 满足

               1.B1,B2....两两互斥,即 Bi ∩ Bj = ∅ ,i≠j , i,j=1,2,....,且P(Bi)>0,i=1,2,....;

               2.B1∪B2∪....=Ω ,则称事件组 B1,B2,...是样本空间Ω的一个划分

          设 B1,B2,...是样本空间Ω的一个划分,A为任一事件,则:

上式即为全概率公式(formula of total probability)

       2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(Bi),P(A|Bi)  (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...Bn,这样事件A就被事件AB1,AB2,...ABn分解成了n部分,即A=AB1+AB2+...+ABn, 每一Bi发生都可能导致A发生相应的概率是P(A|Bi),由加法公式得

         P(A)=P(AB1)+P(AB2)+....+P(ABn)

               =P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|Bn)P(PBn)

        3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产品混在一起,求任取一个产品是次品的概率。

                解:设.....     P(A)=25%*5%+4%*35%+2%*40%=0.0345

 

    (4)贝叶斯公式

      1.与全概率公式解决的问题相反,贝叶斯公式是建立在条件概率的基础上寻找事件发生的原因(即大事件A已经发生的条件下,分割中的小事件Bi的概率),设B1,B2,...是样本空间Ω的一个划分,则对任一事件A(P(A)>0),有

上式即为贝叶斯公式(Bayes formula),Bi 常被视为导致试验结果A发生的”原因“,P(Bi)(i=1,2,...)表示各种原因发生的可能性大小,故称先验概率;P(Bi|A)(i=1,2...)则反映当试验产生了结果A之后,再对各种原因概率的新认识,故称后验概率。

      2.实例:发报台分别以概率0.6和0.4发出信号“∪”和“—”。由于通信系统受到干扰,当发出信号“∪”时,收报台分别以概率0.8和0.2受到信号“∪”和“—”;又当发出信号“—”时,收报台分别以概率0.9和0.1收到信号“—”和“∪”。求当收报台收到信号“∪”时,发报台确系发出“∪”的概率。

         解:设...., P(B1|A)= (0.6*0.8)/(0.6*0.8+0.4*0.1)=0.923

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值